Here a survey of placental evolution is conducted. Placentation is a key factor for the evolution of placental mammals that had evolved an astonishing diversity. As a temporary organ that does not allow easy access, it is still not well understood. The lack of data also is a restriction for better understanding of placental development, structure, and function in the human. Animal models are essential, because experimental access to the human placenta is naturally restricted. However, there is not a single ideal model that is entirely similar to humans. It is particularly important to establish other models than the mouse, which is characterised by a short gestation period and poorly developed neonates that may provide insights only for early human pregnancy. In conclusion, current evolutionary studies have contributed essentially to providing a pool of experimental models for recent and future approaches that may also meet the requirements of a long gestation period and advanced developmental status of the newborn in the human. Suitability and limitations of taxa as alternative animal models are discussed. However, further investigations especially in wildlife taxa should be conducted in order to learn more about the full evolutionary plasticity of the placenta system. 1. Introduction Evolution of the placental system is a key feature of placental mammals or Eutheria. It was already present in their ancient condition (stem species pattern) and had evolved an astonishing diversity following the group’s radiation during the Tertiary [1–8]. Indeed, both their chorioallantoic and yolk sac placentas are regarded as most diverse organs [4, 9–13]. This diversity affects structural and functional aspects such as trophoblast invasion, the establishment of the fetomaternal interface, immune tolerance, and exchange processes. Significant variations occur also in gene expression patterns. About 3000 genes are specifically expressed in eutherian placentas, associated with gene duplications, specifically expressed genes, and a high percentage of retroviral genes adapted for placental functions [14–18]. However, as a temporary organ that does not allow easy access to structure and function, an essential lack in understanding the interaction on various levels remained and placentation was dramatically underrepresented in the traditional surveys on the evolutionary history of mammals. Fortunately, for various reasons the situation has been improved to some degree in the last couple of years. 1.1. Evolutionary Developmental Biology First, due to the rise of the broad
References
[1]
P. W. Luckett, “Uses and limitations of mammalian fetal membranes and placenta for phylogenetic reconstruction,” Journal of Experimental Zoology, vol. 266, no. 6, pp. 514–527, 1993.
[2]
A. M. Carter, “Evolution of the placenta and fetal membranes seen in the light of molecular phylogenetics,” Placenta, vol. 22, no. 10, pp. 800–807, 2001.
[3]
P. Vogel, “The current molecular phylogeny of Eutherian mammals challenges previous interpretations of placental evolution,” Placenta, vol. 26, no. 8-9, pp. 591–596, 2005.
[4]
A. Mess and A. M. Carter, “Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria,” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 306, no. 2, pp. 140–163, 2006.
[5]
A. Mess and A. M. Carter, “Evolution of the placenta during the early radiation of placental mammals,” Comparative Biochemistry and Physiology—A Molecular and Integrative Physiology, vol. 148, no. 4, pp. 769–779, 2007.
[6]
D. E. Wildman, C. Chen, O. Erez, L. I. Grossman, M. Goodman, and R. Romero, “Evolution of the mammalian placenta revealed by phylogenetic analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3203–3208, 2006.
[7]
K. Ferner and A. Mess, “Evolution and development of fetal membranes and placentation in amniote vertebrates,” Respiratory Physiology & Neurobiology, vol. 178, no. 1, pp. 39–50, 2011.
[8]
M. Garratt, J.-M. Gaillard, R. C. Brooks, and J.-F. Lema?tre, “Diversification of the eutherian placenta is associated with changes in the pace of life,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 19, pp. 7760–7765, 2013.
[9]
D. Starck, “Ontogenie und Entwicklungsphysiologie der S?ugetiere,” in Handbuch der Zoologie, W. Kükenthal, Ed., vol. 8, part 22, pp. 1–276, Walter Gruyter, Berlin, Germany, 1959.
[10]
H. W. Mossman, Vertebrate Fetal Membranes: Comparative Ontogeny and Morphology; Evolution; Phylogenetic Significance; Basic Functions; Research Opportunities, Macmillan, London, UK, 1987.
[11]
A. C. Enders, “Reasons for diversity of placental structure,” Placenta, vol. 30, pp. S15–S18, 2009.
[12]
A. M. Carter, “Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses,” Physiological Reviews, vol. 92, no. 4, pp. 1543–1576, 2012.
[13]
M. A. Miglino, F. O. Favaron, and A. M. Mess, “Review: comparative anatomy, development and functional significance of the mammalian yolk sac,” Novo Science Publishers. In press.
[14]
Z. C. Hou, K. N. Sterner, R. Romero et al., “Elephant transcriptome provides insights into the evolution of eutherian placentation,” Genome Biology and Evolution, vol. 4, no. 5, pp. 713–725, 2012.
[15]
D. Haig, “Retroviruses and the placenta,” Current Biology, vol. 22, no. 15, pp. R609–R613, 2012.
[16]
A. Dupressoir, C. Lavialle, and T. Heidmann, “From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation,” Placenta, vol. 33, no. 9, pp. 663–671, 2012.
[17]
E. B. Chuong, “Retroviruses facilitate the rapid evolution of the mammalian placenta,” BioEssays, vol. 35, no. 10, pp. 853–861, 2013.
[18]
M. J. Hemberger, “Immune balance at the foeto-maternal interface as the fulcrum of reproductive success,” Journal of Reproductive Immunology, vol. 97, no. 1, pp. 36–42, 2013.
[19]
M. D. Laubichler, “Das Forschungsprogramm der evolution?ren Entwicklungsbiologie,” in Phiolosophie der Biologie, U. Krohs and G. P. Toepfer, Eds., pp. 322–337, Suhrkamp, Berlin, Germany, 2005.
[20]
L. Olsson, G. S. Levit, and U. Hossfeld, “Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions,” Naturwissenschaften, vol. 97, no. 11, pp. 951–969, 2010.
[21]
A. M. Carter and A. C. Enders, “Comparative aspects of trophoblast development and placentation,” Reproductive Biology and Endocrinology, vol. 2, article 46, 2004.
[22]
P. Chavatte-Palmer and M. Guillomot, “Comparative implantation and placentation,” Gynecologic and Obstetric Investigation, vol. 64, no. 3, pp. 166–174, 2007.
[23]
A. C. Enders and A. M. Carter, “The evolving placenta: convergent evolution of variations in the endotheliochorial relationship,” Placenta, vol. 33, no. 5, pp. 319–326, 2012.
[24]
A. C. Enders and A. M. Carter, “Review: the evolving placenta: different developmental paths to a hemochorial relationship,” Placenta, vol. 33, pp. S92–S98, 2012.
[25]
A. M. Carter and A. C. Enders, “The evolution of epitheliochorial placentation,” Annual Review of Animal Biosciences, vol. 1, pp. 443–467, 2013.
[26]
A. Mess, “Evolutionary transformations of chorioallantoic placental characters in Rodentia with special reference to hystricognath species,” Journal of Experimental Zoology Part A: Comparative Experimental Biology, vol. 299, no. 1, pp. 78–98, 2003.
[27]
A. Mess, “Development of the chorioallantoic placenta in Octodon degus—a model for growth processes in caviomorph rodents?” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 308, no. 4, pp. 371–383, 2007.
[28]
A. Mess, “The guinea pig placenta: model of placental growth dynamics,” Placenta, vol. 28, no. 8-9, pp. 812–815, 2007.
[29]
A. Mess, “The subplacenta in Octodon degus and Petromus typicus—two hystricognath rodents without significant placental lobulation,” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 308, no. 2, pp. 172–188, 2007.
[30]
A. Mess, “Chorioallantoic and yolk sac placentation in the dassie rat Petromus typicus and its bearing to the evolution of hystricognath Rodentia,” Placenta, vol. 28, no. 11-12, pp. 1229–1233, 2007.
[31]
M. Bonatelli, A. M. Carter, M. R. F. Machado, M. F. de Oliveira, M. C. de Lima, and M. A. Miglino, “Placentation in the paca (Agouti paca L),” Reproductive Biology and Endocrinology, vol. 3, article 9, 2005.
[32]
M. F. de Oliveira, A. Mess, C. E. Ambrósio, C. A. G. Dantas, P. O. Favaron, and M. A. Miglino, “Chorioallantoic placentation in Galea spixii (Rodentia, Caviomorpha, Caviidae),” Reproductive Biology and Endocrinology, vol. 6, article 39, 2008.
[33]
M. Franco de Oliveira, P. O. Favaron, C. E. Ambrósio, M. A. Miglino, and A. M. Mess, “Chorioallantoic and yolk sac placentation in Thrichomys laurentinus (Echimyidae) and the evolution of hystricognath rodents,” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 318, no. 1, pp. 13–25, 2012.
[34]
M. F. De Oliveira, A. M. do Vale, P. O. Favaron et al., “Development of yolk sac inversion in Galea spixii and Cavia porcellus (Rodentia, Caviidae),” Placenta, vol. 33, no. 10, pp. 878–881, 2012.
[35]
M. A. Flamini, E. L. Portiansky, P. O. Favaron, et al., “Chorioallantoic and yolk sac placentation in the plains viscacha (Lagostomus maximus)—a caviomorph rodent with natural polyovulation,” Placenta, vol. 32, no. 12, pp. 963–968, 2011.
[36]
P. O. Favaron, A. M. Carter, C. E. Ambrósio et al., “Placentation in Sigmodontinae: a rodent taxon native to South America,” Reproductive Biology and Endocrinology, vol. 9, article 55, 2011.
[37]
P. O. Favaron, A. M. Carter, A. M. Mess, M. F. De Oliveira, and M. A. Miglino, “An unusual feature of yolk sac placentation in Necromys lasiurus (Rodentia, Cricetidae, Sigmodontinae),” Placenta, vol. 33, no. 7, pp. 578–580, 2012.
[38]
P. O. Favaron, A. M. Mess, M. F. de Oliveira et al., “Morphometric analysis of the placenta in the new world mouse Necromys lasiurus (Rodentia, Cricetidae): a comparison of placental development in cricetids and murids,” Reproductive Biology and Endocrinology, vol. 11, no. 1, article 10, 2013.
[39]
A. M. Carter, A. C. Enders, C. J. P. Jones, P. K. Keovichit, and J. P. Hugot, “A new form of rodent placentation in the relict species, Laonastes aenigmamus (Rodentia: Diatomyidae),” Placenta, vol. 34, no. 7, pp. 548–558, 2013.
[40]
B. G. Vasconcelos, P. O. Favaron, M. A. Miglino, and A. M. Mess, “Development and morphology of the inverted yolk sac in the guinea pig (Cavia porcellus),” Theriogenology, vol. 80, no. 6, pp. 636–641, 2013.
[41]
A. M. Carter, S. M. Goodman, and A. C. Enders, “Female reproductive tract and placentation in sucker-footed bats (Chiroptera: Myzopodidae) endemic to Madagascar,” Placenta, vol. 29, no. 6, pp. 484–491, 2008.
[42]
A. M. Carter and A. Mess, “Evolution of the placenta and associated reproductive characters in bats,” Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, vol. 310, no. 5, pp. 428–449, 2008.
[43]
A. C. Enders, C. J. P. Jones, P. J. Taylor, and A. M. Carter, “Placentation in the Egyptian slit-faced bat Nycteris thebaica (Chiroptera: Nycteridae),” Placenta, vol. 30, no. 9, pp. 792–799, 2009.
[44]
L. C. Rezende, C. G. Barbeito, P. O. Favaron, A. Mess, and M. A. Miglino, “The fetomaternal interface in the placenta of three species of armadillos (Eutheria, Xenarthra, Dasypodidae),” Reproductive Biology and Endocrinology, vol. 10, article 38, 2012.
[45]
A. M. Mess, P. O. Favaron, C. Pfarrer et al., “Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla (Eutheria, Xenarthra),” Reproductive Biology and Endocrinology, vol. 10, article 102, 2012.
[46]
A. M. Carter and A. C. Enders, “Placentation in mammals once grouped as insectivores,” The International Journal of Developmental Biology, vol. 54, no. 2-3, pp. 483–493, 2010.
[47]
A. C. Enders, T. N. Blankenship, S. M. Goodman, V. Soarimalala, and A. M. Carter, “PPlacental diversity in malagasy tenrecs: placentation in shrew tenrecs (Microgale spp.), the mole-like rice tenrec (Oryzorictes hova) and the web-footed tenrec (Limnogale mergulus),” Placenta, vol. 28, no. 7, pp. 748–759, 2007.
[48]
J. N. Rutherford, “Toward a nonhuman primate model of fetal programming: phenotypic plasticity of the common marmoset fetoplacental complex,” Placenta, vol. 33, pp. S35–S39, 2012.
[49]
S. Siniza, D. G. Lupia?ez, R. Jiménez, and U. Zeller, “Morphology and ultrastructure of the chorioallantoic placenta of the Iberian mole (Talpa occidentalis) with special reference to heterophagous areolas and the nature of interhaemal barrier,” Journal of Anatomy, vol. 221, no. 2, pp. 164–173, 2012.
[50]
K. Ferner, S. Siniza, and U. Zeller, “The placentation of eulipotyphla—reconstructing a morphotype of the mammalian placenta,” Journal of Morphology, vol. 275, no. 10, pp. 1122–1144, 2014.
[51]
F. B. P. Wooding, J. Kimura, and A. J. Forhead, “Functional immunocytochemistry of Tragulus placenta: implications for ruminant evolution,” Placenta, vol. 35, no. 5, pp. 305–310, 2014.
[52]
A. M. Carter and A. M. Mess, “Conservation of placentation during the tertiary radiation of mammals in South America,” Journal of Morphology, vol. 274, no. 5, pp. 557–569, 2013.
[53]
A. M. Carter, “Comparative studies of placentation and immunology in non-human primates suggest a scenario for the evolution of deep trophoblast invasion and an explanation for human pregnancy disorders,” Reproduction, vol. 141, no. 4, pp. 391–396, 2011.
[54]
A. M. Carter and R. Pijnenborg, “Evolution of invasive placentation with special reference to non-human primates,” Best Practice & Research: Clinical Obstetrics & Gynaecology, vol. 25, no. 3, pp. 249–257, 2011.
[55]
R. Pijnenborg, L. Vercruysse, and A. M. Carter, “Deep trophoblast invasion and spiral artery remodelling in the placental bed of the lowland gorilla,” Placenta, vol. 32, no. 8, pp. 586–591, 2011.
[56]
R. Pijnenborg, L. Vercruysse, and A. M. Carter, “Deep trophoblast invasion and spiral artery remodelling in the placental bed of the chimpanzee,” Placenta, vol. 32, no. 5, pp. 400–408, 2011.
[57]
A. M. Carter, T. N. Blankenship, A. C. Enders, and P. Vogel, “The fetal membranes of the otter shrews and a synapomorphy for afrotheria,” Placenta, vol. 27, no. 2-3, pp. 258–268, 2006.
[58]
M. G. Elliot and B. J. Crespi, “Phylogenetic evidence for early hemochorial placentation in eutheria,” Placenta, vol. 30, no. 11, pp. 949–967, 2009.
[59]
D. E. Wildman, “Review: toward an integrated evolutionary understanding of the mammalian placenta,” Placenta, vol. 32, no. 2, pp. S142–S145, 2011.
[60]
I. Capellini, “The evolutionary significance of placental interdigitation in mammalian reproduction: contributions from comparative studies,” Placenta, vol. 33, no. 10, pp. 763–768, 2012.
[61]
A. Moffett and C. Loke, “Immunology of placentation in eutherian mammals,” Nature Reviews Immunology, vol. 6, no. 8, pp. 584–594, 2006.
[62]
D. Emera, R. Romero, and G. Wagner, “The evolution of menstruation: a new model for genetic assimilation: explaining molecular origins of maternal responses to fetal invasiveness,” BioEssays, vol. 34, no. 1, pp. 26–35, 2012.
[63]
A. L. Fowden and T. Moore, “Maternal-fetal resource allocation: co-operation and conflict,” Placenta, vol. 33, no. 2, pp. e11–e15, 2012.
[64]
R. M. Lewis, J. K. Cleal, and M. A. Hanson, “Review: placenta, evolution and lifelong health,” Placenta, vol. 33, pp. S28–S32, 2012.
[65]
E. J. Crosley, M. G. Elliot, J. K. Christians, and B. J. Crespi, “Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: evidence from genome-wide analyses,” Placenta, vol. 34, no. 2, pp. 127–132, 2013.
[66]
J. S. Hunt and M. G. Petroff, “IFPA senior award lecture: reproductive immunology in perspective—reprogramming at the maternal-fetal interface,” Placenta, vol. 34, pp. S52–S55, 2013.
[67]
E. C. Teeling and S. B. Hedges, “Making the impossible possible: rooting the tree of placental mammals,” Molecular Biology and Evolution, vol. 30, no. 9, pp. 1999–2000, 2013.
[68]
A. M. Carter, “Animal models of human placentation—a review,” Placenta, vol. 28, pp. S41–S47, 2007.
[69]
J. L. James, A. M. Carter, and L. W. Chamley, “Human placentation from nidation to 5 weeks of gestation. Part II: tools to model the crucial first days,” Placenta, vol. 33, no. 5, pp. 335–342, 2012.
[70]
D. A. Clark, “The use and misuse of animal analog models of human pregnancy disorders,” Journal of Reproductive Immunology C, vol. 103, pp. 1–8, 2014.
[71]
A. M. Carter and A. M. Mess, “Mammalian placentation: implications for animal models,” in Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms, L. M. McManus and R. N. Mitchell, Eds., Elsevier, Berlin, Germany, 2014.
[72]
A. E. Guttmacher, Y. T. Maddox, and C. Y. Spong, “The Human Placenta Project: placental structure, development, and function in real time,” Placenta, vol. 35, no. 5, pp. 303–304, 2014.
[73]
W. Westheide and R. Rieger, Spezielle Zoologie. Teil 2: Wirbel-oder Sch?deltiere, Spektrum, Elsevier, München, Germany, 2010.
[74]
A. Mess, D. G. Blackburn, and U. Zeller, “Evolutionary transformations of fetal membranes and reproductive strategies,” Journal of Experimental Zoology Part A: Comparative Experimental Biology, vol. 299, no. 1, pp. 3–12, 2003.
[75]
D. E. Wilson and D. M. Reeder, Mammal Species of the World, Johns Hopkins University Press, Baltimore, Md, USA, 2005.
[76]
M. A. O'Leary, J. I. Bloch, J. J. Flynn et al., “The placental mammal ancestor and the Post-K-Pg radiation of placentals,” Science, vol. 339, no. 6120, pp. 662–667, 2013.
[77]
M. J. Stanhope, V. G. Waddell, O. Madsen et al., “Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 17, pp. 9967–9972, 1998.
[78]
O. Madsen, M. Scally, C. J. Douady et al., “Parallel adaptive radiations in two major clades of placental mammals,” Nature, vol. 409, no. 6820, pp. 610–614, 2001.
[79]
W. J. Murphy, E. Eizirik, S. J. O'Brien et al., “Resolution of the early placental mammal radiation using Bayesian phylogenetics,” Science, vol. 294, no. 5550, pp. 2348–2351, 2001.
[80]
P. J. Waddell, H. Kishino, and R. Ota, “A phylogenetic foundation for comparative mammalian genomics,” Genome information, vol. 12, pp. 141–154, 2001.
[81]
M. S. Springer, M. J. Stanhope, O. Madsen, and W. W. de Jong, “Molecules consolidate the placental mammal tree,” Trends in Ecology and Evolution, vol. 19, no. 8, pp. 430–438, 2004.
[82]
M. S. Springer, W. J. Murphy, E. Eizirik, and S. J. O'Brien, “Molecular evidence for major placental clades,” in The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, K. D. Rose and J. D. Archibald, Eds., pp. 37–49, Johns Hopkins University Press, Baltimore, Md, USA, 2005.
[83]
R. W. Meredith, J. E. Jane?ka, J. Gatesy et al., “Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification,” Science, vol. 334, no. 6055, pp. 521–524, 2011.
[84]
J. D. Archibald, “Timing and biogeography of the eutherian radiation: fossils and molecules compared,” Molecular Phylogenetics and Evolution, vol. 28, no. 2, pp. 350–359, 2003.
[85]
M. J. Novacek, A. R. Wyss, and M. C. McKenna, “The major groups of eutherian mammals,” in The Phylogeny and Classification of the Tetrapods Volume 2: Mammals, M. J. Benton, Ed., pp. 31–71, Clarendon Press, Oxford, UK, 1988.
[86]
J. G. M. Thewissen, L. N. Cooper, M. T. Clementz, S. Bajpai, and B. N. Tiwari, “Whales originated from aquatic artiodactyls in the Eocene epoch of India,” Nature, vol. 450, no. 7173, pp. 1190–1194, 2007.
[87]
S. B. McDowell, “The greater antillean insectivores,” Bulletin of the American Museum of Natural History, vol. 115, pp. 115–213, 1958.
[88]
R. J. Asher, M. J. Novacek, and J. H. Geisler, “Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence,” Journal of Mammalian Evolution, vol. 10, no. 1-2, pp. 131–164, 2003.
[89]
M. R. E. Symonds, “Phylogeny and life histories of the “insectivora”: controversies and consequences,” Biological Reviews of the Cambridge Philosophical Society, vol. 80, no. 1, pp. 93–128, 2005.
[90]
O. R. Bininda-Emonds, M. Cardillo, K. E. Jones et al., “The delayed rise of present-day mammals,” Nature, vol. 446, pp. 507–512, 2007.
[91]
J. Romiguier, V. Ranwez, F. Delsuc, N. Galtier, and E. J. P. Douzery, “Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals,” Molecular Biology and Evolution, vol. 30, no. 9, pp. 2134–2144, 2013.
[92]
E. C. Amoroso, “Placentation,” in Marshall's Physiology of Reproduction, A. S. Parkes, Ed., vol. 2, pp. 127–311, Longmans Green, London, UK, 1952.
[93]
D. G. Blackburn, “Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis,” Journal of Morphology, 2014.
[94]
J. R. Stewart, “Fetal nutrition in lecithotrophic squamate reptiles: toward a comprehensive model for evolution of viviparity and placentation,” Journal of Morphology, vol. 274, no. 7, pp. 824–843, 2013.
[95]
B. Crespi and C. Semeniuk, “Parent-offspring conflict in the evolution of vertebrate reproductive mode,” The American Naturalist, vol. 163, no. 5, pp. 635–653, 2004.
[96]
D. W. Zeh and J. A. Zeh, “Reproductive mode and speciation: the viviparity-driven conflict hypothesis,” Bioessays, vol. 22, pp. 938–946, 2000.
[97]
F. B. Wooding and G. J. Burton, Comparative Placentation: Structures, Function and Evolution, Springer, Berlin, Germany, 2008.
[98]
O. Grosser, Eih?ute und der Placenta, Wilhelm Braumüller, Vienna, Austria, 1909.
[99]
A. M. Carter, “Evolution of factors affecting placental oxygen transfer,” Placenta, vol. 30, pp. 19–25, 2009.
[100]
R. Pijnenborg, L. Vercruysse, and M. Hanssens, “Fetal-maternal conflict, trophoblast invasion, preeclampsia, and the red queen,” Hypertension in Pregnancy, vol. 27, no. 2, pp. 183–196, 2008.
[101]
A. Mess, N. Zaki, M. Kadyrov, H. Korr, and P. Kaufmann, “Caviomorph placentation as a model for trophoblast invasion,” Placenta, vol. 28, no. 11-12, pp. 1234–1238, 2007.
[102]
B. Huppertz, D. Ghosh, and J. Sengupta, “An integrative view on the physiology of human early placental villi,” Progress in Biophysics and Molecular Biology, vol. 114, no. 1, pp. 33–48, 2014.
[103]
J. A. Lillegraven, “Polarities in mammalian evolution seen through homologs of the inner cell mass,” Journal of Mammalian Evolution, vol. 10, no. 4, pp. 277–333, 2003.
[104]
K. Klisch and A. Mess, “Evolutionary differentiation of cetartiodactyl placentae in the light of the viviparity-driven conflict hypothesis,” Placenta, vol. 28, no. 4, pp. 353–360, 2007.
[105]
L. H. Hoffman and F. B. Wooding, “Giant and binucleate trophoblast cells of mammals,” Journal of Experimental Zoology, vol. 266, no. 6, pp. 559–577, 1993.
[106]
C. D. Pfarrer, P. Hirsch, M. Guillomot, and R. Leiser, “Interaction of integrin receptors with extracellular matrix is involved in trophoblast giant cell migration in bovine placentomes,” Placenta, vol. 24, no. 6, pp. 588–597, 2003.
[107]
G. Sheng and A. C. Foley, “Diversification and conservation of the extraembryonic tissues in mediating nutrient uptake during amniote development,” Annals of the New York Academy of Sciences, vol. 1271, no. 1, pp. 97–103, 2012.
[108]
M. H. Baron, “Concise review: early embryonic erythropoiesis: not so primitive after all,” Stem Cells, vol. 31, no. 5, pp. 849–856, 2013.
[109]
J. D. Boyd and W. J. Hamilton, The Human Placenta, Heffer, Cambridge, UK, 1970.
[110]
C. C. Morgan, P. G. Foster, A. E. Webb, D. Pisani, J. O. McInerney, and M. J. O'Connell, “Heterogeneous models place the root of the placental mammal phylogeny,” Molecular Biology and Evolution, vol. 30, no. 9, pp. 2145–2156, 2013.
[111]
L. P. Bergqvist, é. A. L. Abrantes, and L. D. S. Avilla, “The Xenarthra (Mammalia) of S?o José de Itaboraí basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil,” Geodiversitas, vol. 26, no. 2, pp. 323–337, 2004.
[112]
M. dos Reis, J. Inoue, M. Hasegawa, R. J. Asher, P. C. J. Donoghue, and Z. Yang, “Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny,” Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1742, pp. 3491–3500, 2012.
[113]
J. J. Flynn, R. Charrier, D. A. Croft, and A. R. Wyss, “Cenozoic Andean faunas: shedding new light on South American mammal evolution, biogeography, environments and tectonics,” in Bones Clones and Biomes—The History and Geography of Recent Neotropical Mammals, B. D. Patterson and L. P. Costa, Eds., pp. 50–75, University of Chicago Press, Chicago, Ill, USA, 2012.
[114]
T. J. Gaudin and H. G. McDonald, “Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans,” in The Biology of the Xenarthra, S. F. L. Vizcaíno and W. J. Gainesville, Eds., pp. 24–36, University Press of Florida, Gainesville, Fla, USA, 2008.
[115]
A. C. Enders, “Development and structure of the villous haemochorial placenta of the nine-banded armadillo (Dasypus novemcinctus),” Journal of anatomy, vol. 94, pp. 34–45, 1960.
[116]
A. C. Enders, “Electron microscopic observations on the villous haemochorial placenta of the nine-banded armadillo (Dasypus novemcinctus),” Journal of Anatomy, vol. 94, pp. 205–215, 1960.
[117]
A. C. Enders, “Placentation in armadillos, with emphasis on development of the placenta in polyembryonic species,” in The Biology of the Xenarthra, S. F. L. Vizcaíno and W. J. Gainesville, Eds., pp. 172–180, University Press of Florida, Gainesville, Fla, USA, 2008.
[118]
B. F. King, P. B. N. Pinheiro, and R. L. Hunter, “The fine structure of the placental labyrinth in the sloth, Bradypus tridactylus,” Anatomical Record, vol. 202, no. 1, pp. 15–22, 1982.
[119]
G. B. Wislocki, “On the placentation of the two-toed anteater (Cyclopes didactylus),” Anatomical Record, vol. 39, pp. 69–79, 1928.
[120]
K. Benirschke, G. J. Burton, and R. N. Baergen, Pathology of the Human Placenta, Springer, Berlin, Germany, 2012.
[121]
H. Becher, “Placenta und Uterusschleimhaut von Tamandua tetradactya (Myrmecophaga),” Morphologisches Jahrbuch, vol. 67, pp. 381–458, 1931.
[122]
E. W. Walls, “Myrmecophaga jubata: an embryo with placenta,” Journal of Anatomy, vol. 73, pp. 311–317, 1939.
[123]
V. C. Adamoli, P. D. Cetica, M. S. Merani, and A. J. Solari, “Comparative morphologic placental types in dasypodidae (Chaetophractus villosus, Cabassous chacoensis, Tolypeutes matacus and Dasypus hybridus),” Biocell, vol. 25, no. 1, pp. 17–22, 2001.
[124]
G. G. Simpson, “The principles of classification and a classification of mammals,” Bulletin of the American Museum of Natural History, vol. 85, pp. 1–350, 1945.
[125]
M. S. Springer, G. C. Cleven, O. Madsen et al., “Endemic African mammals shake the phylogenetic tree,” Nature, vol. 388, no. 6637, pp. 61–64, 1997.
[126]
E. R. Seiffert, “A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence,” BMC Evolutionary Biology, vol. 7, article 224, 2007.
[127]
T. J. Robinson and E. R. Seiffert, “Afrotherian origins and interrelationships: new views and future prospects,” Current Topics in Developmental Biology, vol. 63, pp. 37–60, 2004.
[128]
R. J. Asher and T. Lehmann, “Dental eruption in afrotherian mammals,” BMC Biology, vol. 6, article 14, 2008.
[129]
E. Gheerbrant, M. Amaghzaz, B. Bouya, F. Goussard, and C. Letenneur, “Ocepeia (middle Paleocene of Morocco): the oldest skull of an afrotherian mammal,” PLoS ONE, vol. 9, no. 2, Article ID e89739, 2014.
B. M. Hallstr?m, A. Schneider, S. Zoller, and A. Janke, “A genomic approach to examine the complex evolution of Laurasiatherian mammals,” PLoS ONE, vol. 6, no. 12, Article ID e28199, 2011.
[132]
J.-Y. Hu, Y.-P. Zhang, and L. Yu, “Summary of Laurasiatheria (mammalia) phylogeny,” Dongwuxue Yanjiu, vol. 33, no. 5-6, pp. E65–E74, 2012.
[133]
M. Nikaido, A. P. Rooney, and N. Okada, “Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10261–10266, 1999.
[134]
X. Zhou, S. Xu, J. Xu, B. Chen, K. Zhou, and G. Yang, “Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the laurasiatherian mammals,” Systematic Biology, vol. 61, no. 1, pp. 150–164, 2011.
[135]
E. C. Teeling, M. S. Springer, O. Madsen, P. Bates, S. J. O'Brien, and W. J. Murphy, “A molecular phylogeny for bats illuminates biogeography and the fossil record,” Science, vol. 307, no. 5709, pp. 580–584, 2005.
[136]
J. J. Rasweiler and N. K. Badwaik, “Anatomy and physiology of the female reproductive tract,” in Reproductive Biology of Bats, E. G. Crichton and P. H. Krutzch, Eds., pp. 157–219, Academic Press, San Diego, Calif, USA, 2000.
[137]
F. T. V. Pereira, L. J. Oliveira, R. S. N. Barreto, et al., “Fetal-maternal interactions in the synepitheliochorial placenta using the eGFP cloned cattle model,” PLoS ONE, vol. 8, no. 5, Article ID e64399, 2013.
[138]
R. V. Anthony, A. N. Scheaffer, C. D. Wright, and T. R. Regnault, “Ruminant models of prenatal growth restriction,” Reproduction, vol. 61, pp. 183–194, 2003.
[139]
J. S. Barry and R. V. Anthony, “The pregnant sheep as a model for human pregnancy,” Theriogenology, vol. 69, no. 1, pp. 55–67, 2008.
[140]
D. H. Steven, Ed., Comparative Placentation: Essays in Structure and Function, Academic Press, London, UK, 1975.
[141]
R. Leiser, C. Krebs, B. Ebert, and V. Dantzer, “Placental vascular corrosion cast studies: a comparison between ruminants and humans,” Microscopic Research Techniques, vol. 38, pp. 76–87, 1997.
[142]
G. Meschia, J. R. Cotter, C. S. Breathnach, and D. H. Barron, “The diffusibility of oxygen across the sheep placenta,” Quarterly Journal of Experimental Physiology and Cognate Medical Sciences, vol. 50, no. 4, pp. 466–480, 1965.
[143]
A. M. Carter, “Placental oxygen consumption. Part I: in vivo studies—a review,” Placenta, vol. 21, no. 1, pp. S31–S37, 2000.
[144]
W. W. Hay Jr., “In vivo measurements of placental transport and metabolism,” Proceedings of the Nutrition Society, vol. 50, no. 2, pp. 355–362, 1991.
[145]
R. I. Jensen, A. M. Carter, O. Sk?tt, and B. L. Jensen, “Adrenomedullin expression during hypoxia in fetal sheep,” Acta Physiologica Scandinavica, vol. 183, no. 2, pp. 219–228, 2005.
[146]
Y. Shufaro and N. Laufer, “Epigenetic concerns in assisted reproduction: update and critical review of the current literature,” Fertility and Sterility, vol. 99, no. 3, pp. 605–606, 2013.
[147]
K. J. Go, J. C. Patel, and D. L. Cunningham, “The role of assisted reproductive technology in the management of recurrent pregnancy loss,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 16, no. 6, pp. 459–463, 2009.
[148]
A. Eroglu and L. C. Layman, “Role of ART in imprinting disorders,” Seminars in Reproductive Medicine, vol. 30, no. 2, pp. 92–104, 2012.
[149]
M. I. Cedars, “National reporting of in vitro fertilization success rates: how do we get patients useful information?” Fertility and Sterility, vol. 100, no. 5, pp. 1210–1211, 2013.
[150]
N. Okun and S. Sierra, “Pregnancy outcomes after assisted human reproduction,” Journal of Obstetrics and Gynaecology Canada, vol. 36, no. 1, pp. 64–83, 2014.
[151]
N. R. Vulliemoz, E. McVeigh, and J. Kurinczuk, “In vitro fertilisation: perinatal risks and early childhood outcomes,” Human Fertility, vol. 15, pp. 62–68, 2012.
[152]
R. Ramasamy, L. I. Lipshultz, and D. J. Lamb, “Cancer risk among children born after assisted conception,” The New England Journal of Medicine, vol. 370, p. 975, 2014.
[153]
J. L. Edwards, F. N. Schrick, M. D. McCracken et al., “Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer,” The American Journal of Reproductive Immunology, vol. 50, no. 2, pp. 113–123, 2003.
[154]
F. V. Meirelles, E. H. Birgel Jr., F. Perecin et al., “Delivery of cloned offspring: experience in Zebu cattle (Bos indicus),” Reproduction, Fertility and Development, vol. 22, no. 1, pp. 88–97, 2010.
[155]
T. H. C. De Bem, M. R. Chiaratti, R. Rochetti et al., “Viable calves produced by somatic cell nuclear transfer using meiotic-blocked oocytes,” Cellular Reprogramming, vol. 13, no. 5, pp. 419–429, 2011.
[156]
J. R. Hill, R. C. Burghardt, K. Jones et al., “Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses,” Biology of Reproduction, vol. 63, no. 6, pp. 1787–1794, 2000.
[157]
M. A. Miglino, F. T. V. Pereira, J. A. Visintin et al., “Placentation in cloned cattle: structure and microvascular architecture,” Theriogenology, vol. 68, no. 4, pp. 604–617, 2007.
[158]
F. Constant, M. Guillomot, Y. Heyman et al., “Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois,” Biology of Reproduction, vol. 75, no. 1, pp. 122–130, 2006.
[159]
M. L. V. Alberto, F. V. Meirelles, F. Perecin, et al., “Development of bovine embryos derived from reproductive techniques,” Reproduction, Fertility and Development, vol. 25, no. 6, pp. 907–917, 2013.
[160]
P. Chavatte-Palmer, S. Camous, H. Jammes, N. Le Cleac'H, M. Guillomot, and R. S. F. Lee, “Review: placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer,” Placenta, vol. 33, pp. S99–S104, 2012.
[161]
P. C. Maiorka, A. Mess, P. O. Favaron, and M. A. Miglino, “Vascular alterations are key for developmental problems in the pre- and postnatal phases of cloned bovines,” PLoS ONE. Submitted.
[162]
C. D. Pfarrer, S. D. Ruziwa, H. Winther, et al., “Localization of vascular endothelial growth factor (VEGF) and its receptors VEGFR-1 and VEGFR-2 in bovine placentomes from implantation until term,” Placenta, vol. 27, no. 8, pp. 889–898, 2006.
[163]
D. B. Campos, P. C. Papa, J. E. B. Marques Jr. et al., “Somatic cell nuclear transfer is associated with altered expression of angiogenic factor systems in bovine placentomes at term,” Genetics and Molecular Research, vol. 9, no. 1, pp. 309–323, 2010.
[164]
M. Kutzler, L. Sahlfeld, and E. Fellows, “Who let the dogs in: a canine trophoblast invasion model for pre-eclampsia,” Reproduction in Domestic Animals, vol. 47, no. 6, pp. 186–189, 2012.
[165]
L. Sahlfeld, T. Hazzard, and M. Kutzler, “Cellular characteristics of cultured canine trophoblasts,” Reproduction in Domestic Animals, vol. 47, no. 6, pp. 161–164, 2012.
[166]
J. O. Kriegs, G. Churakov, M. Kiefmann, U. Jordan, J. Brosius, and J. Schmitz, “Retroposed elements as archives for the evolutionary history of placental mammals,” PLoS biology, vol. 4, no. 4, article e91, 2006.
[167]
R. J. Asher, N. Bennett, and T. Lehmann, “The new framework for understanding placental mammal evolution,” BioEssays, vol. 31, no. 8, pp. 853–864, 2009.
[168]
M. S. Springer, R. W. Meredith, J. E. Janecka, and W. J. Murphy, “The historical biogeography of mammalia,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 366, no. 1577, pp. 2478–2502, 2011.
[169]
R. J. Asher, J. Meng, J. R. Wible et al., “Stem lagomorpha and the antiquity of glires,” Science, vol. 307, no. 5712, pp. 1091–1094, 2005.
[170]
J. O. Kriegs, A. Zemann, G. Churakov et al., “Retroposon insertions provide insights into deep Lagomorph evolution,” Molecular Biology and Evolution, vol. 27, no. 12, pp. 2678–2681, 2010.
[171]
A. Mess, “Character transformations and their functional significance as a key to the evolution of hystricognath Rodentia,” Pesquisa Veterinaria Brasileira, vol. 31, no. 12, pp. 1108–1115, 2011.
[172]
W. P. Luckett, “Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation,” in Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, Eds., vol. 92 of NATO ASI-Series, pp. 227–276, Plenum Press, New York, NY, USA, 1985.
[173]
M. Ade, “Macroscopic study on the rhinarium of the Lagomorpha. With special reference to the glires hypothesis,” Mitteilungen aus dem Museum für Naturkunde, Zoologische Reihe, vol. 75, pp. 191–216, 1999.
[174]
S. Frahnert, “Morphology of the glires ancestral rostral cranium and its implications for the monophyly of this clade,” Mitteilungen aus dem Museum für Naturkunde, Zoologische Reihe, vol. 75, pp. 229–246, 1999.
[175]
A. Mess, “The rostral nasal skeleton of hystricognath rodents: evidence on their phylogenetic interrelationships,” Mitteilungen aus dem Museum für Naturkunde, Zoologische Reihe, vol. 75, pp. 19–35, 1999.
[176]
A. Mess, “Evolutionary differentiation of the rostral nasal skeleton within Glires. A review with new data on lagomorph ontogeny,” Mitteilungen aus dem Museum für Naturkunde, Zoologische Reihe, vol. 75, pp. 221–232, 1999.
[177]
J. Meng, A. R. Wyss, M. R. Dawson, and R. Zhai, “Primitive fossil rodent from inner mongolia and its implications for mammalian phylogeny,” Nature, vol. 370, no. 6485, pp. 134–136, 1994.
[178]
W. P. Luckett, “Morphogenesis of the placenta and fetal membranes of the tree shrews (family Tupaiidae).,” American Journal of Anatomy, vol. 123, no. 3, pp. 385–428, 1968.
[179]
P. Kaufmann, M. Luckhardt, and W. Elger, “The structure of the tupaia placenta - II. Ultrastructure,” Anatomy and Embryology, vol. 171, no. 2, pp. 211–221, 1985.
[180]
K. Theiler, The House Mouse: Development and Normal Stages from Fertilisation to 4 Weeks of Age, Springer, New York, NY, USA, 1972.
[181]
S. L. Adamson, Y. Lu, K. J. Whiteley et al., “Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta,” Developmental Biology, vol. 250, no. 2, pp. 358–373, 2002.
[182]
P. Georgiades, A. C. Fergyson-Smith, and G. J. Burton, “Comparative developmental anatomy of the murine and human definitive placentae,” Placenta, vol. 23, no. 1, pp. 3–19, 2002.
[183]
J. C. Cross, D. Baczyk, N. Dobric et al., “Genes, development and evolution of the placenta,” Placenta, vol. 24, no. 2-3, pp. 123–130, 2003.
[184]
M. Hemberger, T. Nozaki, M. Masutani, and J. C. Cross, “Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion,” Developmental Dynamics, vol. 227, no. 2, pp. 185–191, 2003.
[185]
E. D. Watson and J. C. Cross, “Development of structures and transport functions in the mouse placenta,” Physiology, vol. 20, no. 3, pp. 180–193, 2005.
[186]
D. G. Simmons, A. L. Fortier, and J. C. Cross, “Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta,” Developmental Biology, vol. 304, no. 2, pp. 567–578, 2007.
[187]
D. Hu and J. C. Cross, “Development and function of trophoblast giant cells in the rodent placenta,” International Journal of Developmental Biology, vol. 54, no. 2-3, pp. 341–354, 2010.
[188]
R. M. Roberts and S. J. Fisher, “Trophoblast stem cells,” Biology of Reproduction, vol. 84, no. 3, pp. 412–421, 2011.
[189]
O. R. Vaughan, A. N. Sferruzzi-Perri, P. M. Coan, and A. L. Fowden, “Environmental regulation of placental phenotype: Implications for fetal growth,” Reproduction, Fertility and Development, vol. 24, no. 1, pp. 80–96, 2011.
[190]
M. R. Dilworth and C. P. Sibley, “Review: transport across the placenta of mice and women,” Placenta, vol. 34, pp. S34–S39, 2013.
[191]
M. Gasperowicz, M. Yampolsky, and C. M. Salafia, “Metabolic scaling law for mouse fetal and placental weight,” Placenta, vol. 34, no. 11, pp. 1099–1101, 2013.
[192]
H.-P. Li, X. Chen, and M.-Q. Li, “Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta,” International Journal of Clinical and Experimental Pathology, vol. 6, no. 4, pp. 650–659, 2013.
[193]
P. A. Latos and M. Hemberger, “Review: the transcriptional and signalling networks of mouse trophoblast stem cells,” Placenta, vol. 35, pp. S81–S85, 2014.
[194]
A. Rai and J. C. Cross, “Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry,” Developmental Biology, vol. 387, no. 2, pp. 131–141, 2014.
[195]
M. Duval, “Le placenta des rongeurs. III. Le placenta de la souris et du rat,” Journal of Anatomy and Physiology, vol. 27, pp. 24–73, 344–395, 515–612, 1891.
[196]
W. P. Jollie, “The fine structure of the interhemal membrane of the rat chorioallantoic placenta during prolonged pregnancy,” Anatomical Record, vol. 184, no. 1, pp. 73–89, 1976.
[197]
J. Metz, “On the developing rat placenta. I. Differentiation and junctional alterations of labyrinthine layers II and III,” Anatomy and Embryology, vol. 159, no. 3, pp. 289–305, 1980.
[198]
S. Caluwaerts, L. Vercruysse, C. Luyten, and R. Pijnenborg, “Endovascular trophoblast invasion and associated structural changes in uterine spiral arteries of the pregnant rat,” Placenta, vol. 26, no. 7, pp. 574–584, 2005.
[199]
L. Vercruysse, S. Caluwaerts, C. Luyten, and R. Pijnenborg, “Interstitial trophoblast invasion in the decidua and mesometrial triangle during the last third of pregnancy in the rat,” Placenta, vol. 27, no. 1, pp. 22–33, 2006.
[200]
L. Hering, F. Herse, N. Geusens et al., “Effects of circulating and local uteroplacental angiotensin ii in rat pregnancy,” Hypertension, vol. 56, no. 2, pp. 311–318, 2010.
[201]
A. Serman and L. Serman, “Development of placenta in a rodent—model for human placentation,” Frontiers in Bioscience—Elite, vol. 3, no. 1, pp. 233–239, 2011.
[202]
T. G. Zybina, G. I. Stein, and E. V. Zybina, “Endopolyploid and proliferating trophoblast cells express different patterns of intracellular cytokeratin and glycogen localization in the rat placenta,” Cell Biology International, vol. 35, no. 7, pp. 649–655, 2011.
[203]
B. M. Fonseca, G. Correia-da-Silva, and N. A. Teixeira, “The rat as an animal model for fetoplacental development: a reappraisal of the post-implantation period,” Reproductive Biology, vol. 12, no. 2, pp. 97–118, 2012.
[204]
J. S. Gilbert, A. J. Bauer, A. Gingery, C. T. Banek, and S. Chasson, “Circulating and utero-placental adaptations to chronic placental ischemia in the rat,” Placenta, vol. 33, no. 2, pp. 100–105, 2012.
[205]
M. J. Soares, D. Chakraborty, M. A. Karim Rumi, T. Konno, and S. J. Renaud, “Rat placentation: an experimental model for investigating the hemochorial maternal-fetal interface,” Placenta, vol. 33, no. 4, pp. 233–243, 2012.
[206]
M. Shin, H. Hino, M. Tamura et al., “Thrombomodulin improves maternal and fetal conditions in an experimental pre-eclampsia rat model,” Journal of Obstetrics and Gynaecology Research, vol. 40, pp. 1226–1234, 2014.
[207]
A. C. Enders, “A comparative study of the fine structure of the trophoblast in several hemochorial placentas,” The American Journal of Anatomy, vol. 116, pp. 29–67, 1965.
[208]
B. A. Croy, Z. Chen, A. P. Hofmann, E. M. Lord, A. L. Sedlacek, and S. A. Gerber, “The imaging of vascular development in early mouse decidua and its association with leukocytes and trophoblasts,” Biology of Reproduction, vol. 87, no. 5, article 125, 2012.
[209]
A. Robson, L. K. Harris, B. A. Innes, et al., “Uterine natural killer cells initiate spiral artery remodeling in human pregnancy,” The FASEB Journal, vol. 26, no. 12, pp. 4876–4885, 2012.
[210]
P. Parham and A. Moffett, “Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution,” Nature Reviews Immunology, vol. 13, no. 2, pp. 133–144, 2013.
[211]
R. Lavocat, “La systématique des Rongeurs hystricomorphes et la dérive des continents,” Comptes Rendus de l'Académie des Sciences, Série D: Sciences Naturelles, vol. 269, no. 16, pp. 1496–1497, 1969.
[212]
D. H. Tarling, “The geologic evolution of South America with special reference to the last 200 million years,” in Evolutionary Biology of the New World Monkeys and Continental Drift, R. L. Ciochon and A. B. Chiarelli, Eds., pp. 1–41, Plenum Press, New York, NY, USA, 1980.
[213]
B. Patterson and A. E. Wood, “Rodents from the deseadan oligocene of Bolivia and the relationships of the Caviomorpha,” Bulletin of the Museum of Comparative Zoology at Harvard, vol. 149, pp. 371–543, 1982.
[214]
A. R. Wyss, J. J. Flynn, M. A. Norell et al., “South America's earliest rodent and recognition of a new interval of mammalian evolution,” Nature, vol. 365, no. 6445, pp. 434–437, 1993.
[215]
M. G. Vucetich, D. H. Verzi, and J.-L. Hartenberger, “Review and analysis of the radiation of the South American Hystricognathi (Mammalia, Rodentia),” Comptes Rendus de l'Académie des Sciences—Series IIA: Earth and Planetary Science, vol. 329, no. 10, pp. 763–769, 1999.
[216]
O. Heidmann, C. Vernochet, A. Dupressoir, and T. Heidmann, “Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new “syncytin” in a third order of mammals,” Retrovirology, vol. 6, article 107, 2009.
[217]
J.-J. Jaeger, C. Denys, and B. Coiffait, “New Phiomorpha and Anomaluridae from the late Eocene of North-West Africa: phylogenetic implications,” in Evolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, Eds., vol. 92, pp. 567–588, Plenum Press, New York, NY, USA, 1985.
[218]
M. A. Nedbal, R. L. Honeycutt, and D. A. Schlitter, “Higher-level systematics of rodents (Mammalia, Rodentia): evidence from the mitochondrial 12S rRNA gene,” Journal of Mammalian Evolution, vol. 3, no. 3, pp. 201–237, 1996.
[219]
D. Huchon, F. M. Catzeflis, and E. J. P. Douzery, “Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi,” Proceedings of the Royal Society B: Biological Sciences, vol. 267, no. 1441, pp. 393–402, 2000.
[220]
T. Martin, “African origin of caviomorph rodents is indicated by incisor enamel microstructure,” Paleobiology, vol. 20, no. 1, pp. 5–13, 1994.
[221]
A. Mess, B. Mohr, and T. Martin, “Transformations in the stem species pattern of hystricognath Rodentia and the climatic change in the Eocene to Late Oligocene time interval,” Mitteilungen aus dem Museum für Naturkunde, Zoologische Reihe, vol. 77, pp. 193–206, 2001.
[222]
A. M. Mess and A. M. Carter, “Evolution of the interhaemal barrier in the placenta of rodents,” Placenta, vol. 30, no. 10, pp. 914–918, 2009.
[223]
C. Kanashiro, T. C. Santos, M. A. Miglino, A. M. Mess, and A. M. Carter, “Growth and development of the placenta in the capybara (Hydrochaeris hydrochaeris),” Reproductive Biology and Endocrinology, vol. 7, article 57, 2009.
[224]
M. A. Miglino, A. M. Carter, R. H. dos Santos Ferraz, and M. R. Fernandes Machado, “Placentation in the capybara (Hydrochaerus hydrochaeris), agouti (Dasyprocta aguti) and paca (Agouti paca),” Placenta, vol. 23, no. 5, pp. 416–428, 2002.
[225]
H. W. Mossman, “The rabbit placenta and the problem of placental transmission,” The American Journal of Anatomy, vol. 37, pp. 433–497, 1926.
[226]
B. Fischer, P. Chavatte-Palmer, C. Viebahn, A. N. Santos, and V. Duranthon, “Rabbit as a reproductive model for human health,” Reproduction, vol. 144, no. 1, pp. 1–10, 2012.
[227]
R. H. Foote and E. W. Carney, “The rabbit as a model for reproductive and developmental toxicity studies,” Reproductive Toxicology, vol. 14, no. 6, pp. 477–493, 2000.
[228]
E. Eixarch, E. Hernandez-Andrade, F. Crispi et al., “Impact on fetal mortality and cardiovascular Doppler of selective ligature of uteroplacental vessels compared with undernutrition in a rabbit model of intrauterine growth restriction,” Placenta, vol. 32, no. 4, pp. 304–309, 2011.
[229]
Z.-X. Fan, Y. Lu, L. Deng et al., “Placenta- versus bone-marrow-derived mesenchymal cells for the repair of segmental bone defects in a rabbit model,” FEBS Journal, vol. 279, no. 13, pp. 2455–2465, 2012.
[230]
A. Tarrade, E. Lecarpentier, S. Gil et al., “Analysis of placental vascularization in a pharmacological rabbit model of IUGR induced by l-NAME, a nitric oxide synthase inhibitor,” Placenta, vol. 35, no. 4, pp. 254–259, 2014.
[231]
J. F. Larsen, “Electron microscopy of the chorioallantoic placenta of the rabbit: I. The placental labyrinth and the multinucleated giant cells of the intermediate zone,” Journal of Ultrasructure Research, vol. 7, no. 5-6, pp. 535–549, 1962.
[232]
S. Tavaré, C. R. Marshall, O. Will, C. Soligo, and R. D. Martin, “Using the fossil record to estimate the age of the last common ancestor of extant primates,” Nature, vol. 416, no. 6882, pp. 726–729, 2002.
[233]
F. S. Szalay and E. Delson, Evolutionary History of the Primates, Academic Press, New York, NY, USA, 1979.
[234]
B. F. Koop, D. A. Tagle, M. Goodman, and J. L. Slightom, “A molecular view of primate phylogeny and important systematic and evolutionary questions,” Molecular Biology and Evolution, vol. 6, no. 6, pp. 580–612, 1989.
[235]
M. Goodman, D. A. Tagle, D. H. A. Fitch et al., “Primate evolution at the DNA level and a classification of hominoids,” Journal of Molecular Evolution, vol. 30, no. 3, pp. 260–266, 1990.
[236]
J. P. Hill, “The developmental history of the primates,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 221, pp. 45–178, 1932.
[237]
W. P. Luckett, “Comparative development and evolution of the placenta in primates,” Contributions to Primatology, vol. 3, pp. 142–234, 1974.
[238]
W. P. Luckett, “Cladistic relationships among primate higher categories: evidence of the fetal membranes and placenta,” Folia Primatologica, vol. 25, no. 4, pp. 245–276, 1976.
[239]
B. F. King, “The fine structure of the placenta and chorionic vesicles of the bush baby, Galago crassicaudata,” American Journal of Anatomy, vol. 169, no. 1, pp. 101–116, 1984.
[240]
H.-J. Merker, D. Bremer, H.-J. Barrach, and R. Gossrau, “The basement membrane of the persisting maternal blood vessels in the placenta of Callithrix jacchus,” Anatomy and Embryology, vol. 176, no. 1, pp. 87–97, 1987.
[241]
T. N. Blankenship, A. C. Enders, and B. F. King, “Trophoblastic invasion and modification of uterine veins during placental development in macaques,” Cell and Tissue Research, vol. 274, no. 1, pp. 135–144, 1993.
[242]
A. C. Enders, K. C. Lantz, P. E. Peterson, and A. G. Hendrickx, “From blastocyst to placenta: the morphology of implantation in the baboon,” Human Reproduction Update, vol. 3, no. 6, pp. 561–573, 1997.
[243]
A. C. Enders, T. N. Blankenship, A. T. Fazleabas, and C. J. P. Jones, “Structure of anchoring villi and the trophoblastic shell in the human, baboon and macaque placenta,” Placenta, vol. 22, no. 4, pp. 284–303, 2001.
[244]
E. D. Albrecht, T. W. Bonagura, D. W. Burleigh, A. C. Enders, G. W. Aberdeen, and G. J. Pepe, “Suppression of extravillous trophoblast invasion of uterine spiral arteries by estrogen during early baboon pregnancy,” Placenta, vol. 27, no. 4-5, pp. 483–490, 2006.
[245]
N. S. Sunderland, S. E. Thomson, S. J. Heffernan, et al., “Tumor necrosis factor α induces a model of preeclampsia in pregnant baboons (Papio hamadryas),” Cytokine, vol. 56, no. 2, pp. 192–199, 2011.
[246]
A. C. Enders and T. N. Blankenship, “Interstitial trophoblast cells: an enigmatic and variable component of the developing macaque placenta,” Placenta, vol. 33, no. 9, pp. 672–676, 2012.
[247]
V. H. J. Roberts, J. P. R?s?nen, M. J. Novy, et al., “Restriction of placental vasculature in a non-human primate: a unique model to study placental plasticity,” Placenta, vol. 33, no. 1, pp. 73–76, 2012.
[248]
R. D. Martin, “The evolution of human reproduction: a primatological perspective,” American Journal of Physical Anthropology, vol. 134, supplement 45, pp. 59–84, 2007.
[249]
K. S. Ludwig, “A further contribution to the structure of the gorilla placenta,” Acta Anatomica, vol. 46, pp. 304–310, 1961.
[250]
H. Soma, “Notes on the morphology of the chimpanzee and orang-utan placenta,” Placenta, vol. 4, no. 3, pp. 279–290, 1983.
[251]
E. Winterhager, P. Kaufmann, and R. Gruemmer, “Cell-cell-communication during placental development and possible implications for trophoblast proliferation and differentiation,” Placenta, vol. 21, no. 1, pp. S61–S68, 2000.
[252]
P. Kaufmann, S. Black, and B. Huppertz, “Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia,” Biology of Reproduction, vol. 69, no. 1, pp. 1–7, 2003.
[253]
D. Cavanagh, P. S. Rao, R. A. Knuppel, U. Desai, and J. U. Balis, “Pregnancy-induced hypertension: development of a model in the pregnant primate (Papio anubis),” American Journal of Obstetrics & Gynecology, vol. 151, no. 7, pp. 987–999, 1985.
[254]
D. M. Nelson, P. E. Swanson, B. B. Davison, G. B. Baskin, and A. C. Enders, “Ontogenetic and phylogenetic evaluation of the presence of fibrin-type fibrinoid in the villous haemochorial placenta,” Placenta, vol. 18, no. 7, pp. 605–608, 1997.
[255]
E. D. Albrecht, J. S. Babischkin, and G. J. Pepe, “Regulation of placental villous angiopoietin-1 and -2 expression by estrogen during baboon pregnancy,” Molecular Reproduction and Development, vol. 75, no. 3, pp. 504–511, 2008.
[256]
K. van Calsteren, R. Devlieger, L. de Catte, et al., “Feasibility of ultrasound-guided percutaneous samplings in the pregnant baboon: a model for studies on transplacental transport,” Reproductive Sciences, vol. 16, no. 3, pp. 280–285, 2009.
[257]
T. G. Golos, G. I. Bondarenko, S. V. Dambaeva, E. E. Breburda, and M. Durning, “On the role of placental major histocompatibility complex and decidual leukocytes in implantation and pregnancy success using non-human primate models,” The International Journal of Developmental Biology, vol. 54, no. 2-3, pp. 431–443, 2010.
[258]
G. I. Bondarenko, M. Durning, and T. G. Golos, “Immunomorphological changes in the rhesus monkey endometrium and decidua during the menstrual cycle and early pregnancy,” American Journal of Reproductive Immunology, vol. 68, no. 4, pp. 309–321, 2012.
[259]
L. A. Cox, C. Li, J. P. Glenn et al., “Expression of the placental transcriptome in maternal nutrient reduction in baboons is dependent on fetal sex,” Journal of Nutrition, vol. 143, no. 11, pp. 1698–1708, 2013.
[260]
P. O. Favaron, J. C. Morini Jr., A. M. Mess, M. A. Miglino, C. E. Ambr, and C. E. Ambrósio, “Placentation and fetal membrane development in the South American coati, Nasua nasua (Mammalia, Carnivora, Procyonidae),” Reproductive Biology and Endocrinology, vol. 12, article 57, 2014.