Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (100 to 150?μg/mL) was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures. 1. Introduction Nunu is a spontaneously fermented milk (yoghurt-like) product in Ghana and other parts of West Africa including Nigeria and Burkina Faso. Unlike other African fermented milk products where milk of goats, sheep, and camels is used, Nunu is solely prepared from cow milk. The traditional processing of Nunu involves collecting fresh cow milk into containers and then allowing it to ferment for a day or two days at ambient temperature. Nunu is yoghurt-like in taste (a sharp acid taste) and it can be taken alone or with Fura [1, 2]. Like many other spontaneously fermented foods in Africa, the production of Nunu is largely home-based and the fermentation is spontaneous. Thus, starter cultures are not available, but old stocks of previous ferments and fermentation containers are used to initiate fermentation in new batches. The dependence on such undefined and diverse microbial consortium during Nunu fermentation may result in product of variable quality and stability. Currently, there is no information on the use of starter cultures for Nunu fermentation. However,
References
[1]
J. Owusu-Kwarteng, F. Akabanda, D. S. Nielsen, K. Tano-Debrah, R. L. K. Glover, and L. Jespersen, “Identification of lactic acid bacteria isolated during traditional fura processing in Ghana,” Food Microbiology, vol. 32, no. 1, pp. 72–78, 2012.
[2]
F. Akabanda, J. Owusu-Kwarteng, K. Tano-Debrah, R. L. K. Glover, D. S. Nielsen, and L. Jespersen, “Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product,” Food Microbiology, vol. 34, no. 2, pp. 277–283, 2013.
[3]
M. Obodai and C. E. R. Dodd, “Characterization of dominant microbiota of a Ghanaian fermented milk product, nyarmie, by culture- and nonculture-based methods,” Journal of Applied Microbiology, vol. 100, no. 6, pp. 1355–1363, 2006.
[4]
F. Akabanda, J. Owusu-Kwarteng, R. K. L. Glover, and K. Tano-Debrah, “Microbiological characteristics of Ghanaian traditional fermented milk product, Nunu,” Nature and Science, vol. 8, pp. 178–187, 2010.
[5]
E. H. E. Ayad, S. Nashat, N. El-Sadek, H. Metwaly, and M. El-Soda, “Selection of wild lactic acid bacteria isolated from traditional Egyptian dairy products according to production and technological criteria,” Food Microbiology, vol. 21, no. 6, pp. 715–725, 2004.
[6]
O. N. Donkor, A. Henriksson, T. Vasiljevic, and N. P. Shah, “Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk,” Lait, vol. 87, no. 1, pp. 21–38, 2007.
[7]
R. G. Leuschner, P. M. Kenneally, and E. K. Arendt, “Method for the rapid quantitative detection of lipolytic activity among food fermenting microorganisms,” International Journal of Food Microbiology, vol. 37, no. 2-3, pp. 237–240, 1997.
[8]
J. A. Bonade, A. J. Dagnan, and M. J. Garver, “Production of helveticin from Lactobacillus helveticus,” Letters in Applied Microbiology, vol. 33, pp. 153–158, 2001.
[9]
J. P. Guiraud, Microbiologie Alimentaire, Dunod Microsoft Press, Paris, France, 1998.
[10]
E. P. Knoshaug, J. A. Ahlgren, and J. E. Trempy, “Growth associated exopolysaccharide expression in Lactococcus lactissubspeciescremoris ropy 352,” Journal of Dairy Science, vol. 83, no. 4, pp. 633–640, 2000.
[11]
M. K. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric method for determination of sugars and related substances,” Analytical Chemistry, vol. 28, no. 3, pp. 350–356, 1956.
[12]
M. T. C. Ojinnaka and P. C. Ojimelukwe, “Study of the volatile compounds and amino acid profile in Bacillus fermented castor oil bean condiment,” Journal of Food Research, vol. 2, pp. 191–203, 2013.
[13]
T. Idoul and N. E. Karam, “Lactic acid bacteria from Jijel’s traditional butter: isolation, identification and major technological traits,” Grasas y Aceites, vol. 59, no. 4, pp. 361–367, 2008.
[14]
J. S. Y. Haddadin, “Kinetic studies and sensorial analysis of Lactic Acid Bacteria isolated from white cheese made from sheep raw milk,” Pakistan Journal of Nutrition, vol. 4, pp. 78–84, 2005.
[15]
P. Sarantinopoulos, C. Andrighetto, M. D. Georgalaki, et al., “Biochemical properties of enterococci relevant to their technological performance,” International Dairy Journal, vol. 11, no. 8, pp. 621–647, 2001.
[16]
A. C. Freitas, A. E. Pintado, M. E. Pintado, and F. X. Malcata, “Role of dominant microflora of Picante cheese on proteolysis and lipolysis,” International Dairy Journal, vol. 9, no. 9, pp. 593–603, 1999.
[17]
H. S. Park and E. H. Marth, “Behaviour of Salmonella typhimurium in skim milk during fermentation by lactic acid bacteria,” Journal of Milk and Food Technology, vol. 35, pp. 482–488, 1972.
[18]
F. Durlu-Ozkaya, V. Xanthopoulos, N. Tunail, and E. Litopoulou-Tzanetaki, “Technologically important properties of lactic acid bacteria isolates from Beyaz cheese made from raw ewes' milk,” Journal of Applied Microbiology, vol. 91, no. 5, pp. 861–870, 2001.
[19]
E. Dagdemir and S. Ozdemir, “Technological characterization of the natural lactic acid bacteria of artisanal Turkish White Pickled cheese,” International Journal of Dairy Technology, vol. 61, no. 2, pp. 133–140, 2008.
[20]
S. D. Peterson, R. T. Marshall, and H. Heymann, “Peptidase profiling of lactobacilli associated with Cheddar cheese and its application to identification and selection of strains of Cheese-ripening studies,” Journal of Dairy Science, vol. 73, pp. 1454–1464, 1990.
[21]
L. Axelsson, “Lactic acid bacteria: classification and physiology,” in Lactic Acid Bacteria: Microbiology and Functional Aspects, S. Salminen and A. von Wright, Eds., pp. 1–72, Marcel Dekker, New York, NY, USA, 1998.
[22]
J. E. Christensen, E. G. Dudley, J. A. Pederson, and J. L. Steele, “Peptidases and amino acid catabolism in lactic acid bacteria,” Antonie van Leeuwenhoek, vol. 76, no. 1–4, pp. 217–246, 1999.
[23]
E. Tsakalidou, E. Manolopoulou, E. Kabaraki et al., “The combined use of whole-cell protein extracts for the identification (SDS-PAGE) and enzyme activity screening of lactic acid bacteria isolated from traditional Greek dairy products,” Systematic and Applied Microbiology, vol. 17, no. 3, pp. 444–458, 1994.
[24]
R. Aravindan, P. Anbumathi, and T. Viruthagiri, “Lipase applications in food industry,” Indian Journal of Biotechnology, vol. 6, no. 2, pp. 141–158, 2007.
[25]
V. Ramakrishnan, B. Balakrishnan, A. K. Rai, B. Narayan, and P. M. Halami, “Concomitant production of lipase, protease and enterocin by Enterococcus faecium NCIM5363 and Enterococcus durans NCIM5427 isolated from fish processing waste,” International Aquatic Research, vol. 4, p. 14, 2012.
[26]
P. Ruas-Madiedo, M. Gueimonde, A. Margolles, C. G. De Los Reyes-Gavilán, and S. Salminen, “Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus,” Journal of Food Protection, vol. 69, no. 8, pp. 2011–2015, 2006.
[27]
A. Becker, F. Katzen, A. Pühler, and L. Ielpi, “Xanthan gum biosynthesis and application: a biochemical/genetic perspective,” Applied Microbiology and Biotechnology, vol. 50, no. 2, pp. 145–152, 1998.
[28]
J. Cerning and V. M. E. Marshall, “Exopolysaccharides produced by the dairy lactic acid bacteria,” Recent Results and Developments, vol. 3, pp. 195–209, 1999.
[29]
A. Patel and J. B. Prajapati, “Food and health applications of exopolysaccharides produced by lactic acid bacteria,” Advances in Dairy Research, vol. 1, p. 107, 2013.
[30]
H. M. Stack, N. Kearney, C. Stanton, G. F. Fitzgerald, and R. P. Ross, “Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli,” Applied and Environmental Microbiology, vol. 76, no. 2, pp. 500–507, 2010.
[31]
M.-A. Levrat-Verny, S. Behr, V. Mustad, C. Rémésy, and C. Demigné, “Low levels of viscous hydrocolloids lower plasma cholesterol in rats primarily by impairing cholesterol absorption,” The Journal of Nutrition, vol. 130, no. 2, pp. 243–248, 2000.
[32]
H. Maeda, X. Zhu, S. Suzuki, K. Suzuki, and S. Kitamura, “Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2B T,” Journal of Agricultural and Food Chemistry, vol. 52, no. 17, pp. 5533–5538, 2004.
[33]
Y. Kim, S. oh, and S. H. Kim, “Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7,” Biochemical and Biophysical Research Communications, vol. 379, no. 2, pp. 324–329, 2009.
[34]
P. Ruas-Madiedo, M. Gueimonde, A. Margolles, C. G. de los Reyes-Gavilán, and S. Salminen, “Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus,” Journal of Food Protection, vol. 69, no. 8, pp. 2011–2015, 2006.
[35]
F. Dal Bello, J. Walter, C. Hertel, and W. P. Hammes, “In vitro study of prebiotic properties of levan-type exopolysaccharides from Lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis,” Systematic and Applied Microbiology, vol. 24, no. 2, pp. 232–237, 2001.
[36]
T. Hongpattarakere, N. Cherntong, S. Wichienchot, S. Kolida, and R. A. Rastall, “In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria,” Carbohydrate Polymers, vol. 87, no. 1, pp. 846–852, 2012.
[37]
M. Kivan?, “Antagonistic action of lactic cultures toward spoilage and pathogenic microorganisms in food.,” Die Nahrung, vol. 34, no. 3, pp. 273–277, 1990.
[38]
G. Tadesse, E. Ephraim, and M. Ashenafi, “Assessment of the antimicrobial activity of lactic acid bacteria isolated from Borde and Shamita, traditional Ethiopian fermented beverages, on some foodborne pathogens and effect of growth medium on the inhibitory activity,” Internet Journal of Food Safety, vol. 5, pp. 13–20, 2005.
[39]
O. R. Afolabi, O. M. Bankole, and O. J. Olaitan, “Production and characterization of antimicrobial agents by Lactic Acid Bacteria Isolated from Fermented Foods,” The Internet Journal of Microbiology, vol. 4, p. 2, 2008.
[40]
I. A. Adesokan, B. B. Odetoyinbo, and A. O. Olubamiwa, “Biopreservative activity of lactic acid bacteria on suya produced from poultry meat,” African Journal of Biotechnology, vol. 7, no. 20, pp. 3799–3803, 2008.
[41]
M. Raccah, R. C. Baker, J. M. Degenstein, and E. J. Mulnix, “Potential application of microbial antagonism to extend storage ability of a flesh type food,” Journal of Food Science, vol. 44, pp. 43–46, 1979.
[42]
J. L. Smith and S. A. Palumbo, “Use of starter cultures in meat,” Journal of Food Protection, vol. 46, pp. 997–1006, 1983.
[43]
L. M. Cintas, P. Casaus, H. Holo, P. E. Hernandez, I. F. Nes, and L. S. H?varstein, “Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins,” Journal of Bacteriology, vol. 180, no. 8, pp. 1988–1994, 1998.
[44]
S. M. Wakil and U. O. Osamwonyi, “Isolation and screening of antimicrobial producing lactic acid bacteria from fermenting millet gruel,” International Research Journal of Microbiology, vol. 3, pp. 72–79, 2012.
[45]
M. A. Daeschel, “Applications and interactions of bacteriocins from lactic acid bacteria in foods and beverages,” in Bacteriocins of Lactic Acid Bacteria, pp. 63–91, Academic Press, New York, NY, USA, 1993.
[46]
S. Condon, “Aerobic metabolism of lactic acid bacteria,” Irish Journal of Food Science and Technology, vol. 7, pp. 5–25, 1983.
[47]
E. L. Thomas and K. A. Pera, “Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide,” Journal of Bacteriology, vol. 154, no. 3, pp. 1236–1244, 1983.
[48]
E. A. Muradyan, L. A. Erzhynkyan, and M. S. Sapondzhyan, “Composition of free amino acids in fermented milk products,” Biologicheskii Zhurnal Armenii, vol. 29, pp. 111–112, 1986.
[49]
V. R. Young, “Protein and amino acids,” in Present Knowledge of Nutrition, B. A. Bowman and R. M. Russel, Eds., pp. 43–58, ILSI Press, Washington, DC, USA, 8th edition, 2001.
[50]
A. Haug, A. T. H?stmark, and O. M. Harstad, “Bovine milk in human nutrition—a review,” Lipids in Health and Disease, vol. 6, article 25, 2007.
[51]
FAO/WHO/UNU (Expert Consultation), “Protein and amino acid requirements in human nutrition,” WHO Technical Report, Food and Agriculture Organization/World Health Organization/United Nations, Geneva, Switzerland, 2007.
[52]
M. F. Fuller and P. J. Garlick, “Human amino acid requirements: can the controversy be resolved?” Annual Review of Nutrition, vol. 14, pp. 217–241, 1994.