|
Numerical Analysis of Vibration Isolation Using Pile Rows against the Vibration due to Moving Loads in a Viscoelastic MediumDOI: 10.1155/2014/810525 Abstract: A numerical method for evaluating the vertical vibration isolation effect of pile rows embedded in a viscoelastic half space subjected to a moving load is developed in this paper on the basis of the Cole-Cole model and Muki’s method. Based on the proposed method, the influence of various parameters on the vibration isolation effect of pile rows embedded in the viscoelastic half space is investigated numerically. 1. Introduction Vibration induced by railway traffic is a major concern for civil engineers as it causes annoyance to residents or even damage to adjacent structures. Generally, the effects of ground vibrations can be mitigated by two kinds of vibration isolation methods: the active and the passive vibration isolation methods. The active isolation system is often used to reduce the ground vibration near the source. It is usually installed either around the vibration source or at a close distance to the source. The passive isolation system, on the other hand, usually is far away from the source and surrounds the protected structure. Normally, there are two passive vibration isolation methods: the trench (open or infilled) isolation method and the pile (pile rows or sheet piles) isolation method. To date, many studies concerning vibration isolation using trenches or piles have been conducted. For example, Emad and Manolis [1] utilized the boundary element method (BEM) with constant elements to examine the efficiency of vibration reduction by open trench with a rectangular or a circular cross-section. Considering the coupling effects between the soil skeleton and underground water, Cao et al. [2] proposed an analytical model to investigate the screening efficiency of trenches to moving-load induced ground vibrations based on Biot’s dynamic poroelastic theory. Cai et al. [3] investigated the vibration isolation effect of pile rows embedded in a poroelastic medium by using the wave function expansion method. Kattis et al. [4, 5] used 3D BEM to calculate the screening effectiveness of a pile row in the frequency domain. Also, by means of the frequency domain BEM, the screening effectiveness of four types of circular piles in a row against the vibration due to a massless square foundation subjected to a harmonic vertical loading is studied by Tsai et al. [6]. Besides, by means of the fictitious pile method developed by Muki and Sternberg [7] and the direct superposition method, Lu et al. [8, 9] analyzed the vibration isolation effect of pile rows. It is noticed that previous studies concern the vibration isolation modelling in a generalized standard
|