全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modelling Agro-Met Station Observations Using Genetic Algorithm

DOI: 10.1155/2014/512925

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present work discusses the development of a nonlinear data-fitting technique based on genetic algorithm (GA) for the prediction of routine weather parameters using observations from Agro-Met Stations (AMS). The algorithm produces the equations that best describe the temporal evolutions of daily minimum and maximum near-surface (at 2.5-meter height) air temperature and relative humidity and daily averaged wind speed (at 10-meter height) at selected AMS locations. These enable the forecasts of these weather parameters, which could have possible use in crop forecast models. The forecast equations developed in the present study use only the past observations of the above-mentioned parameters. This approach, unlike other prediction methods, provides explicit analytical forecast equation for each parameter. The predictions up to 3 days in advance have been validated using independent datasets, unknown to the training algorithm, with impressive results. The power of the algorithm has also been demonstrated by its superiority over persistence forecast used as a benchmark. 1. Introduction In the recent past, nonlinear data-adaptive approach of genetic algorithm [1, 2] for the forecast of a particular meteorological parameter has gained considerable ground. This is particularly advantageous when a location-specific forecast of a specific parameter is required and when a long time series of observations (either in situ or remotely sensed) of the relevant parameter exists. The algorithm is computationally extremely cheap and produces good quality forecasts. An additional advantage of genetic algorithm (GA) is that an explicit analytical forecast equation is obtained as an outcome of the algorithm [3, 4]. Also, the algorithm can work with only a small number of data points, typically of the order of a few hundred. Predictive skill of GA has been amply demonstrated in the cases of sea surface temperature (SST) in the Alboran Sea [5] and Arabian Sea [6], summer monsoon rainfall over India [7], SST and sea level anomaly in the Ligurian Sea [8], wave heights in the north Indian Ocean [3] and more recently, for basin-scale predictions of ocean surface wind in the north Indian Ocean [9] and wave heights in the Bay of Bengal [10]. Even tidal currents from a few tidal levels have been predicted using GA [11]. At the outset it should be clarified that we are not attempting to provide an alternate method of weather prediction, which can be done only by a numerical weather prediction (NWP) model, since only such a model can provide multilevel forecasts of a large number of

References

[1]  G. G. Szpiro, “Forecasting chaotic time series with genetic algorithms,” Physical Review E, vol. 55, no. 3, pp. 2557–2568, 1997.
[2]  A. Alvarez, A. Orfila, and J. Tintore, “DARWIN: an evolutionary program for nonlinear modeling of chaotic time series,” Computer Physics Communications, vol. 136, no. 3, pp. 334–349, 2001.
[3]  S. Basu, A. Sarkar, K. Satheesan, and C. M. Kishtawal, “Predicting wave heights in the north Indian Ocean using genetic algorithm,” Geophysical Research Letters, vol. 32, no. 17, 2005.
[4]  S. Basu, K. Satheesan, A. Sarkar, and C. M. Kishtawal, “Ocean surface wind prediction in the north Indian Ocean from in situ and satellite observations using genetic algorithm,” Geophysical Research Letters, vol. 32, no. 24, Article ID L24601, 2005.
[5]  A. álvarez, C. López, M. Riera, E. Hernández-García, and J. Tintoré, “Forecasting the SST space-time variability of the Alboran Sea with genetic algorithms,” Geophysical Research Letters, vol. 27, no. 17, pp. 2709–2712, 2000.
[6]  R. Sharma, S. Basu, A. Sarkar, and P. K. Pal, “Data-adaptive prediction of sea-surface temperature in the Arabian Sea,” IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 1, pp. 9–13, 2011.
[7]  C. M. Kishtawal, S. Basu, F. Patadia, and P. K. Thapliyal, “Forecasting summer rainfall over India using genetic algorithm,” Geophysical Research Letters, vol. 30, no. 23, pp. 1–9, 2003.
[8]  A. álvarez, A. Orfila, and J. Tintoré, “Real-time forecasting at weekly timescales of the SST and SLA of the Ligurian Sea with a satellite-based ocean forecasting (SOFT) system,” Journal of Geophysical Research C: Oceans, vol. 109, no. 3, 2004.
[9]  S. Basu, R. Sharma, N. Agarwal, R. Kumar, and A. Sarkar, “Forecasting of scatterometer-derived wind fields in the North Indian Ocean with a data-adaptive approach,” Journal of Geophysical Research: Oceans, vol. 114, no. C9, 2009.
[10]  A. D. Rao, M. Sinha, and S. Basu, “Bay of Bengal wave forecast based on genetic algorithm: a comparison of univariate and multivariate approaches,” Applied Mathematical Modelling, vol. 37, no. 6, pp. 4232–4244, 2013.
[11]  P. G. Remya, R. Kumar, and S. Basu, “Forecasting tidal currents from tidal levels using genetic algorithm,” Ocean Engineering, vol. 40, pp. 62–68, 2012.
[12]  R. Agrawal and S. C. Mehta, “Weather based forecasting of crop yields, pests and diseases-IASRI models,” Journal of the Indian Society of Agricultural Statistics, vol. 61, no. 2, pp. 255–263, 2007.
[13]  H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, “The analysis of observed chaotic data in physical systems,” Reviews of Modern Physics, vol. 65, no. 4, pp. 1331–1392, 1993.
[14]  B. K. Bhattacharya, C. B. S. Dutt, and J. S. Parihar, “INSAT uplinked Agromet Station—a scientific tool with a network of automated micrometeorological measurements for soil-canopy-atmosphere feedback studies,” in ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture, 2009.
[15]  R. Sharma, A. Sarkar, N. Agarwal, R. Kumar, and S. Basu, “A new technique for forecasting surface wind field from scatterometer observations: a case study for the Arabian Sea,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 3, pp. 613–619, 2007.
[16]  F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, D. Rand and L. S. Young, Eds., vol. 898 of Lecture Notes in Mathematics, pp. 366–381, Springer, New York, NY, USA, 1981.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133