Wetting fluid flow through rock discontinuities
influence a great number of project among others: dam construction, underground
projects, CO2 storage in underground schemes, geological disposal of
radioactive wastes; Hydrocarbon storage caverns. Flow through fractures is
considered to be laminar due to small aperture of the fracture walls and slow
velocity. The fluid model called “Cubic law” describes the flow assuming
parallel infinite plates. However, natural discontinuities on rock have
roughness. In this experimental study an induced fracture on a sample of
medium-grained marble was used, to determine the influence of roughness in
water flow. This study is a preliminary part of research funding program for
flow of CO2 through rocks (AUTH-GEOMechanics and Environment of CO2 geological
Storage, Project No. 456,400).
References
[1]
Bandis, S. C., Makurat, A., & Vik, G. (1986). Predicted and Measured Hydraulic Conductivity of Rock Joints. Publikas-jon-Norges Gotekniske Institutt, 164, 1-11.
[2]
Barton, N. (1973). Review of a New Shear-Strength Criterion for Rock Joints. Engineering Geology, 7, 287-332.
http://dx.doi.org/10.1016/0013-7952(73)90013-6
[3]
Barton, N., Bandis, S., & Bakhtar, K. (1985). Strength, Deformation and Conductivity Coupling of Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22, 121-140.
http://dx.doi.org/10.1016/0148-9062(85)93227-9
[4]
Barton, N., & Choubey, V. (1977). The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics Felsmechanik Mecanique Des Roches, 10, 1-54. http://dx.doi.org/10.1007/BF01261801
[5]
Bear, J. (1979). Hydraulics of Groundwater. MacGraw-Hill.
[6]
Brown, S. R. (1987). Fluid Flow through Rock Joints: The Effect of Surface Roughness. Journal of Geophysical Research, 92, 1337-1347. http://dx.doi.org/10.1029/JB092iB02p01337
[7]
Kranzz, R. L., Frankel, A. D., Engelder, T., & Scholz, C. H. (1979). The Permeability of Whole and Jointed Barre Granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 225-234.
http://dx.doi.org/10.1016/0148-9062(79)91197-5
[8]
Li, B., Jiang, Y., Koyama, T., Jing, L., & Tanabashi, Y. (2008). Experimental Study of the Hydro-Mechanical Behavior of Rock Joints Using a Parallel-Plate Model Containing Contact Areas and Artificial Fractures. International Journal of Rock Mechanics and Mining Sciences, 45, 362-375. http://dx.doi.org/10.1016/j.ijrmms.2007.06.004
[9]
Li, B., Wong, R. C. K., & Milnes, T. (2014). Anisotropy in capillary invasion and fluid flow through induced sandstone and shale fractures. International Journal of Rock Mechanics and Mining Sciences, 65, 129-140.
http://dx.doi.org/10.1016/j.ijrmms.2013.10.004
[10]
Myers, N. O. (1962). Characterization of Surface Roughness. Wear, 5, 182-189.
http://dx.doi.org/10.1016/0043-1648(62)90002-9
[11]
Olsson, R., & Barton, N. (2001). An Improved Model for Hydro-mechanical Coupling during Shearing of Rock Joints. International Journal of Rock Mechanics and Mining Sciences, 38, 317-329. http://dx.doi.org/10.1016/S1365-1609(00)00079-4
[12]
Oron, A. P., & Berkowitz, B. (1998). Flow in Rock Fractures: The Local Cubic Law Assumption Reexamined. Water Resources Research, 34, 2811-2825. http://dx.doi.org/10.1029/98WR02285
[13]
Park, H., Osada, M., Matsushita, T., Takahashi, M., & Ito, K. (2013). Devel-opment of Coupled Shear-Flow-Visualization Apparatus and Data Analysis. International Journal of Rock Mechanics and Mining Sciences, 63, 72-81.
http://dx.doi.org/10.1016/j.ijrmms.2013.06.003
[14]
Renshaw, C. E. (1995). On the Relationship between Mechanical and Hydraulic Apertures in Rough-Walled Fractures. Journal of Geophysical Research, 100, 629-636. http://dx.doi.org/10.1029/95JB02159
[15]
Tse, R., & Cruden, D. M. (1979). Estimating Joint Roughness Coefficients. In-ternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 303-307. http://dx.doi.org/10.1016/0148-9062(79)90241-9
[16]
Witherspoon, P. A., Wang, J. S. Y., Iwai, K., & Gale, J. E. (1980). Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture. Water Resources Research, 16, 1016-1024. http://dx.doi.org/10.1029/WR016i006p01016
[17]
Yeo, I. W., de Freitas, M. H., & Zimmerman, R. W. (1998). Effect of Shear Displacement on the Aperture and Permeability of a Rock Fracture. International Journal of Rock Mechanics and Mining Sciences, 35, 1051-1070.
http://dx.doi.org/10.1016/S0148-9062(98)00165-X
[18]
Zhao, Z., Li, B., & Jiang, Y. (2013). Effects of Fracture Surface Roughness on Macroscopic Fluid Flow and Solute Transport in Fracture Networks. Rock Mechanics and Rock Engineering, 47, 2279-2286
http://dx.doi.org/10.1007/s00603-013-0497-1
[19]
Zimmerman, R. W., Al-Yaarubi, A., Pain, C. C., & Grattoni, C. A. (2004). Non-Linear Regimes of Fluid Flow in Rock Fractures. International Journal of Rock Mechanics and Mining Sciences, 41, 384.
http://dx.doi.org/10.1016/j.ijrmms.2003.12.045
[20]
Zimmerman, R. W., & Bodvarsson, G. (1996). Hydraulic Conductivity of Rock Fractures. Transport in Porous Media, 23, 1-30. http://dx.doi.org/10.1007/BF00145263