全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多晶硅定向凝固铸锭炉热场改进数值模拟研究
Numerical Simulation of the Optimized Hot Zone Structure of the Multi-Crystalline Silicon Directional Solidification Furnace for Photovoltaics

DOI: 10.12677/MS.2014.45024, PP. 159-167

Keywords: 太阳能,多晶硅,热场,数值模拟,定向凝固
Photovoltaics
, Multi-Crystalline Silicon, Hot Zone, Numerical Simulation, Directional Solidification

Full-Text   Cite this paper   Add to My Lib

Abstract:

多晶硅定向凝固铸锭炉的热场对于生长高质量的多晶硅极为重要。本文利用CGSim软件对多晶硅铸锭炉热场的底部边缘、侧边增加保温材料的改进并进行了数值模拟研究,与未改进的热场进行了对比,分析了这些改进对温场、流场和固液生长界面的影响。模拟结果表明,热场改进后,等温线在坩埚底部边缘和侧边部位变得平缓,抑制了坩埚底部边缘的散热以及边缘横向晶的产生,熔体流动更加有利于杂质排出,多晶硅的定向凝固生长质量得到了提高。
The hot zone of the directional solidification multi-crystalline silicon furnace is extremely important to the quality of multi-crystalline silicon. In this paper, numerical simulation was carried out by using CGSim on the added heat preservation structures in the bottom edges and sidewalls of the hot zone and its effects on the temperature field, flow field and interface were analyzed. Simulation results show that, after the optimization of the hot zone, isotherms around the bottom edges and the sidewalls become flat and the flow of the molten silicon is better to remove the impurities. Therefore, the quality of the multi-crystalline silicon by directional solidification is improved.

References

[1]  Hering, G. (2011) Year of the tiger. Photon International, 3, 186-218.
[2]  Fujiwara, K., Pan, W., Sawada, K., Tokairin, M., Usami, N., Nose, Y., Nomura, A., Shishido, T. and Nakajima, K. (2006) Directional growth method to obtain high quality polycrystalline silicon from its melt. Journal of Crystal Growth, 292, 282-285.
[3]  Wang, H.Y., Usami, N., Fujiwara, K., Kutsukake, K. and Nakajima, K. (2009) Microstructures of Si multicrystals and their impact on minority carrier diffusion length. Acta Materialia, 57, 3268-3276.
[4]  Lan, C.W., Lan, W.C., Lee, T.F., Yu, A., Yang, Y.M., Hsu, W.C., Hsu, B. and Yang, A. (2012) Grain control in directional solidification of photovoltaic silicon. Journal of Crystal Growth, 360, 68-75.
[5]  Zhang, Z.Q. and Huang, Z.F. (2011) Analysis of microcrystal formation in DS-silicon ingot. Science China Technological Sciences, 54, 1475-1480.
[6]  Wu, B., Stoddard, N., Ma, R.H. and Clark, R. (2008) Bulk multi-crystalline silicon growth for photovoltaic (PV) application. Journal of Crystal Growth, 310, 2178-2184.
[7]  Teng, Y.Y., Chen, J.C., Lu, C.W. and Chen, C.Y. (2010) The carbon distribution in multi-crystalline silicon ingot growth using directional solidification process. Journal of Crystal Growth, 312, 1282-1290.
[8]  Steinbach, I., Apel, M., Rettebach, T. and Frank, D. (2002) Numerical simulations for silicon crys-tallization pro- cesses-examples from ingot and ribbon casting. Solar Energy Material and Solar Cells, 72, 59-68.
[9]  Wu, B., Scott, S., Stoddard, N., Clark, R. and Sholapurwalla, A. (2009) Simulation of silicon casting process for photovoltaic application. Proceeding of the 2009 TMS Annual Meeting & Exhibition, 12-19.
[10]  Teng, Y.Y., Chen, J.C., Lu, C.W., Chen, H.I., Hsu, C. and Chen, C.Y. (2011) Effect of the furnace pressure on oxygen and silicon oxide distributions during the growth of multi-crystalline silicon ingots by the directional solidification process. Journal of Crystal Growth, 318, 224-229.
[11]  Teng, Y.Y., Chen, J.C., Lu, C.W. and Chen, C.Y. (2012) Numerical investigation of oxygen impurity distribution during multicrystalline silicon crystal growth using gas flow guidance device. Journal of Crystal Growth, 360, 12-17.
[12]  Teng, Y.Y., Chen, J.C., Huang, B.S. and Chang, C.H. (2014) Numerical simulation of impurity transport under the effect of a gas flow guidance device during the growth of multi-crystalline silicon ingots by the directional solidification process. Journal of Crystal Growth, 385, 1-8.
[13]  Ding, C.L., Huang, M.L., Zhong, G.X., Ming, L. and Huang, X.M. (2014) A design of crucible susceptor for the seeds preservation during a seeded directional solidification process. Journal of Crystal Growth, 387, 73-80.
[14]  Black, A., Medina, J., Pineiro, A. and Dieguez. E. (2012) Optimizing seeded casting of mono-like silicon crystals through numerical simulation. Journal of Crystal Growth, 353, 12-16.
[15]  Li, Z.Y., Zhang, Y.F., Hu, Z.Y., Zhou, G.S. and Liu, L.J. (2014) Numerical investigation of the effect of a crucible cover on crystal growth in the industry directional solidification process for silicon ingots. Journal of Crystal Growth, 401, 291-295.
[16]  Demina, S.E., Bystrova, E.N., Lukanina, M.A., Mamedov, V.M., Yuferev, V.S., Eskov, E.V., Nikolenko, M.V., Postolov, V.S. and Kalaev, V.V. (2007) Numerical analysis of sapphire crystal growth by the Kyropoulos technique. Optical Materials, 30, 62-65.
[17]  Miyagawa, C., Kobayashi, T., Taishi, T. and Hoshikawa, K. (2014) Development of the vertical Bridgman technique for 6-inch diameter c-axis sapphire growth supported by numerical simulation. Journal of Crystal Growth, 402, 83-89.
[18]  Li, J.Q., Su, X.P., Na, M., Yang, H., Li, J.M., Yu, Y.N. and Mi, J.J. (2006) Influence of gas flow on thermal field and stress during growth of sapphire single crystal using Kyropoulos method. Rare Metals, 25, 260-266.
[19]  Su, W.J. Zuo, R., Mazaev, K. and Kalaev, V. (2010) Optimization of crystal growth by changes of flow guide, radiation shield and shidewall insulation in Cz Si furnace. Journal of Crystal Growth, 312, 495-501.
[20]  Su, W.J., Zuo, R., Lu, J.G., Di, C.Y. and X.N. Cheng. (2014) Numerical and experimental studies on the Black Periphery Wafer in Cz Si growth. Journal of Crystal Growth, 388, 42-47.
[21]  Smirnova, O.V., Durnev, N.V., Shandrakova, K.E., Mizitov, E.L. and Soklakov, V.D. (2008) Optimization of furnace design and growth parameters for Si Cz growth, using numerical simulation. Journal of Crystal Growth, 310, 2185- 2191.
[22]  Chen, J.C., Guo, P.C., Chang, C.H., Teng, Y.Y., Hsu, C., Wang, H.M. and Liu, C.C. (2014) Numerical simulation of oxygen transport during the Czochralski silicon crystal growth with a cusp magnetic field. Journal of Crystal Growth, 401, 888-894.
[23]  Kullevm, A.T., Dumev, N.V. and Kalaev, V.V. (2007) Analysis of 3D unsteady melt flow and crystallization front ge- ometry during a casting process for silicon solar cell. Journal of Crystal Growth, 303, 236-240.
[24]  (2010) CGSIMTM, Flow Module, Ver. 3.11, Theory Manual. Semiconductor Technology Research, Inc. http://www.semitech.us/
[25]  (2008) STR GROUP, CGSIM MATERIAL data base, v.8.12 [DB\CD]. ST. Petersburg, Richmond. http://www.semitech.us/
[26]  姚连增 (1995) 晶体生长基础. 中国科学与技术大学出版社, 合肥, 247-249.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133