|
激光烧蚀在材料加工中的应用及其机理研究进展I:在加工领域和表面改性纳米光栅方面应用
|
Abstract:
[1] | 杨建军.飞秒激光超精细“冷”加工技术及其应用(I)[J]. 激光与光电子学进展, 2004, 41(3): 47-52. |
[2] | J. Bromberg. The laser in America, 1950-1970. Cambridge: MIT Press, 1991: 202. |
[3] | R. H. Hohig, J. R. Woolston. Laser-induced emission of elec- trons, ions and neutral atoms from solid surfaces. Applied Phys- ics Letters, 1963, 2(7): 138-139. |
[4] | J. F. Ready. Development of plume of material vaporized by giant-pulse laser. Applied Physics Letters, 1963, 3(1): 11-13. |
[5] | H. M. Smith, A. F. Turner. Vacuum deposition thin film using a ruby laser. Applied Optics, 1965, 4(1): 147-148. |
[6] | R. K. Singh, J. Narayan. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Physical Review B, 1990, 41(13): 8843-8859. |
[7] | D. P. Norton. Pulsed laser deposition of complex material: Pro- gress towards applications. In: R. Eason, Ed., Pulsed laser deposition of thin films. New York: Wiley-Interscience, 2007: 3. |
[8] | S. J. Maddox. Fracture mechanics applied to fatigue in welded structure. British Welding Inst. Report E, 1970: 36-70. |
[9] | E. V. Locke. Apparatus for heat treating a surface. United States Patent 3848104, 1974. |
[10] | G. Y. Liu, D. J. Toncich and E. C. Harvey. Evaluation of excimer laser ablation of thin Cr film on glass substrate by analysing acoustic emission. Optics and Lasers in Engineering, 2004, 42: 639. |
[11] | S. K. Lee, S. J. Na. KrF excimer laser ablation of thin Cr film on glass substrate. Applied Physics A, 1999, 68(4): 417-423. |
[12] | I. S. Ruddock, D. J. Bradley. Bandwidth-limited subpicosecond pulse generation in mode-locked cw dye lasers. Applied Phys- ics Letters, 1976, 29(5): 296-297. |
[13] | R. L. Fork, B. I. Greene and C. V. Shank. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Applied Physics Letters, 1981, 38(9): 671-672. |
[14] | M. T. Asaki, C. P. Huang, D. Garvey, et al. Generation of 11-fs pulses from a self-mode-locked Ti: Sapphire laser. Optics Letters, 1993, 18(12): 977-979. |
[15] | U. Keller. Recent developments in compact ultrafast lasers. Nature, 2003, 424(6950): 831-838. |
[16] | D. Stevenson, B. Agate, X. Tsampoula, et al. Femtosecond optical transfection of cells: Viability and efficiency. Optics Express, 2006, 14(16): 7125-7133. |
[17] | T. Tajima, G. Mourou. Special topics-accelerators and beams. Physical Review, 2002, 5: 03130121. |
[18] | M. Huang, F. L. Zhao, Z. Z. Xu, et al. Large area uniform nano- structures fabricated by direct femtosecond laser ablation. Optics Express, 2008, 16(23): 19354-19365. |
[19] | M. Shinoda, R. R. Gattass and E. Mazur. Femtosecond laser- induced formation of nanometer-width grooves on synthetic sin- gle-crystal diamond surfaces. Journal of Applied Physics, 2009, 105: Article ID: 053102. |
[20] | A. Y. Vorobyev, C. L. Guo. Enhanced absorptance of gold fol- lowing multipulse femtosecond laser ablation. Physical Review B, 2005, 72: Article ID: 195422 |
[21] | B. N. Chichkov, C. Momma, S. Nolte, et al. Femtosecond, pico- second and nanosecond laser ablation of solids. Applied Physics A, 1996, 63(2): 109-115. |
[22] | Y. K. Godovsky. Thermophysical properties of polymers. New York: Spring-Verlag, 1992: 28. |
[23] | J. Lawrence, K. Minami, L. Li, et al. Effect of processing gas in high power diode laser ablation of tile grout. Applied Surface Science, 2002, 186(1): 264-270. |
[24] | J. Lawrence, L. Li. The influence of shield gases on the surface condition of laser treated concrete. Applied Surface Science, 2000, 168(1): 25-28. |
[25] | L. G. Hector, R. B. Hetnarski. Thermal stresses in materials due to laser heating, thermal stresses IV. Amsterdam: Elsevier, 1996: 453-531. |
[26] | J. F. Li, L. Li and F. H. Stott. A three-dimensional numerical model for a convection-diffusion phase change process during laser melting of ceramic materials. International Journal of Heat and Mass Transfer, 2004, 47(25): 5523-5539. |
[27] | C. Zhang, I. A. Salama and N. R. Quick. One-dimensional tran- sient analysis of volumetric heating for laser drilling. Journal of Applied Physics, 2006, 99: Article ID: 113530. |
[28] | C. Zhang, N. R. Quick and A. Kar. A model for self-defocusing in laser drilling of polymeric materials. Journal of Applied Phy- sics, 2008, 103: Article ID: 014909. |
[29] | I. A. Choudhury, S. Shirley. Laser cutting of polymeric materials: An experimental investigation. Optics & Laser Technology, 2010, 42(3): 503-508. |
[30] | A. Sharma, V. Yadava. Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile. Optics & Laser Technology, 2012, 44(1): 159- 168. |
[31] | B. S. Yilbas, S. Z. Shuja and M. S. J. Hashmi. A numerical solution for laser heating of titanium and nitrogen diffusion in solid. Journal of Materials Processing Technology, 2003, 136(1-3): 12-23. |
[32] | S. J. Lv, W. Yang. An investigation of pulsed laser cutting of titanium alloy sheet. Optics and Lasers in Engineering, 2006, 44(10): 1067-1077. |
[33] | D. Triantafyllidis, L. Li and F. H. Stott. Crack-free densification of ceramics by laser surface treatment. Surface and Coatings Technology, 2006, 201(6): 3163-3173. |
[34] | Y. Zhao, Y. J. Jiang. Effect of KrF excimer laser irradiation on the properties of ZnO thin films. Journal of Applied Physics, 2008, 103: Article ID: 114903. |
[35] | J. K. Jiao, X. B. Wang. Cutting glass substrates with dual-laser beams. Optics and Lasers in Engineering, 2009, 47(7-8): 860- 864. |
[36] | S. Yan, Z. Hong, T. Watanabe, et al. CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets. Optics and Lasers in Engineering, 2010, 48(7-8): 732-736. |
[37] | W. W. Duley. Laser welding. New York: John Wiley & Sons, 1999: 1. |
[38] | Y. Vorobyev, C. L. Guo. Femtosecond laser structuring of tita- nium implants. Applied Surface Science, 2007, 253(17): 7272- 7280 |
[39] | Y. Vorobyev, C. Guo. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. Journal of Applied Physics, 2008, 103(4): Article ID: 043513. |
[40] | J. E. Sipe, J. F. Young, J. S. Preston, et al. Laser-induced peri- odic surface structure, I. Theory. Physical Review B, 1983, 27(2): 1141-1154. |
[41] | J. F. Young, J. S. Preston, H. M. Driel, et al. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Physical Review B, 1983, 27(2): 1155-1172. |
[42] | M. Oron, G. Sorensen. New experimental evidence of the peri- odic surface structure in laser annealing. Applied Physics Letters, 1979, 35(10): 782-784. |
[43] | D. J. Ehrlich, S. R. J. Brueck and J. Y. Tsao. Time-resolved mea- surements of stimulated surface polariton wave scattering and grating formation in pulsed-laser-annealed germanium. Applied Physics Letters, 1982, 41(7): 630-932. |
[44] | J. Reif, F. Costache, M. Henyk et al. Ripples revisited: Non- classical morphology at the bottom of femtosecond laser abla- tion craters in transparent dielectrics. Applied Surface Science, 2002, 24(4): 197-198, 891-895. |
[45] | R. M. Walser, M. F. Baecker, J. G. Ambrose, et al. Laser and electron beam solid interactions and materials processing. New York: Elsevier, 1981: 177-184. |
[46] | J. A. Van Vechten. Experimental tests for boson condensation and superconductivity in semiconductors during pulsed beam an- nealing. Solid State Communications, 1981, 39(12): 1285-1291. |
[47] | Z. H. Li, P. N. Li, J. Q. Fan, et al. Energy accumulation effect and parameter optimization for fabricating of high-uniform and large-area period surface structures induced by femtosecond pulsed laser. Optics and Lasers in Engineering, 2010, 48(1): 64. |
[48] | M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, et al. Surface electromagnetic waves in optics. Optical Engineering (Bellingham), 1992, 31: 718. |
[49] | A. M. Ozkan, A. P. Malshe and T. A. Railkar. Femtosecond laser- induced periodic structure writing on diamond crystals and mi- croclusters. Applied Physics Letters, 1999, 75(23): 3716-3718. |
[50] | B. Tan, K. Venkatakrishnan. A femtosecond laser-induced peri- odical surface structure on crystalline silicon. Journal of Micro- mechanics and Microengineering, 2006, 16(5): 1080-1085. |
[51] | A. Y. Vorobyev, V. S. Makin and C. L.Guo. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. Journal of Applied Physics, 2007, 101: Article ID: 034903. |
[52] | J. C. Wang, C. L. Guo. Formation of extraordinarily uniform peri- odic structures on metals induced by femtosecond laser pulses. Journal of Applied Physics, 2006, 100: Article ID: 023511. |
[53] | A. Y. Vorobyev, C. L. Guo. Femtosecond laser-induced periodic surface structure formation on tungsten. Journal of Applied Phy- sics, 2008, 104: Article ID: 063523. |
[54] | H. L. Ma, Y. Guo, M. J. Zhong, et al. Femtosecond pulse laser- induced self-organized nanogratings on the surface of a ZnSe crystal. Applied Physics A, 2007, 89(3): 707-709. |
[55] | L. Sudrie, M. Franco, B. Prade and A. Mysyrowicz. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Optics Communications, 1999, 171(4- 6): 279-284. |
[56] | S. H. Cho, H. Kumagai and K. Midorikawa. Fabrication of inter- nal diffraction gratings in planar silica plates using low-density plasma formation induced by a femtosecond laser. Nuclear Instruments and Methods in Physics Research Section B, 2002, 197(1): 73-82. |
[57] | A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, et al. Enhanced absorption of metals over ultrabroad electromagnetic spectrum. Applied Physics Letters, 2009, 95: Article ID: 121106. |