|
海洋生源硅溶解速率及其控制机理概述
|
Abstract:
[1] | D. M. Nelson, P. Tréguer, M. A. Brzezinski, et al. Production and dis-solution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimenta-tion. Global Biogeochemical Cycles, 1995, 9(3): 359-372. |
[2] | D. Archer. Effect of deep-sea sedimentary calcite preservation on atmos-pheric CO2 concentration. Nature, 1994, 367: 260-263. |
[3] | M. A. Brzezinski, T. A. Villareal and F. Lipschultz. Silica production and the contribution of diatoms to new and primary production in the central North Pacific. Marine Ecology Progress Series, 1998, 167: 89-104. |
[4] | J. L. Sarmiento, N. Gruber, M. A. Brzezinski, et al. High-latitude controls of thermocline nutrients and low latitude bio-logical productivity. Nature, 2004, 427(6969): 56-60. |
[5] | D. J. De-Master. The supply and accumulation of silica in the marine environ-ment. Geochimica et Cosmochimica Acta, 1981, 45(10): 1715-1732. |
[6] | P. Tréguer, D. M. Nelson, A. J. Van Bennekom, et al. The silica balance in the world ocean: A reestimate. Science, 1995, 268 (5209): 375-379. |
[7] | W. S. Broecker, G. M. Henderson. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography, 1998, 13(4): 352-364. |
[8] | R. Francois, M. A. Altabet, E. F. Yu, et al. Con-tribution of Southern Ocean surface water stratification to low atmos-pheric CO2 concentrations during the last glacial period. Nature, 1997, 389(6654): 929-936. |
[9] | O. Ragueneau, P. Tréguer, A. Leynaert, et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 2000, 26(4): 317-365. |
[10] | T. H. Peng, E. Maier-Reimer and W. S. Broecker. Distribution of 32Si in the World Ocean: model compared to observation. Global Biogeochemical Cycles, 1993, 7(2): 463-474. |
[11] | P. Van Cappellen, L. Qiu. Biogenic silica dissolution in sediments of the Southern Ocean: I. Solubility. Deep Sea Research, 1997, 44(5): 1109-1128. |
[12] | P. Michalopoulos, R. C. Aller and R. J. Reeder. Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds. Geology, 2000, 28(12): 1095-1098. |
[13] | P. Michalopoulos, R. C. Aller. Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay forma-tion, and storage. Geochimica et Cosmochimica Acta, 2004, 68(5): 1061- 1085. |
[14] | D. J. DeMaster. The accumulation and cycling of biogenic silica in the Southern Ocean: Revisiting the marine silica budge. Deep Sea Research PartⅡ: Topical Study in Oceanography, 2002, 49 (16): 3155-3167. |
[15] | D. C. Hurd, S. Birdwhistell. On producing a more general model for biogenic silica dissolution. Ameri-can Journal of Science, 1983, 283: 1-28. |
[16] | D. C. Hurd. Factors af-fecting solution rate of biogenic opal in seawater. Earth and Planetary Science Letters, 1972, 15(4): 411- 417. |
[17] | A. Kamatani. Dissolution rates of silica from diatoms decomposing at various temperatures. Marine Biology, 1982, 68(1): 91-96. |
[18] | D. M. Nelson, L. I. Gordon. Production and pelagic dissolution of biogenic silica in the Southern Ocean. Geochemistry Cosmochemistry Acta, 1982, 46(4): 491-501. |
[19] | P. Tréguer, A. Kamatani, S. Gueneley, et al. Kinetics of dissolution of Antarctic diatom frustules and the biogeochemical cycle of silicon in the Southern Ocean. Polar Biology, 1989, 9(6): 397- 403. |
[20] | D. M. Nelson, J. A. Ahern and L. J. Herlihy. Cycling of biogenic silica within the upper water column of the Ross Sea. Marine Chemistry, 1991, 35(1-4): 461-476. |
[21] | M. A. Brzezinski, D. M. Nelson. Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep Sea Research, 1989, 36(7): 1009-1030. |
[22] | J. C. Lewin. The dissolution of silica from diatom walls. Geochemistry Cosmochemistry Acta, 1961, 21(3-4): 182-198. |
[23] | A. J. Van Ben-nekom, A. G. J. Buma and R. F. Nolting. Dissolved aluminum in the Weddell Scotia Confluence and the effect of Al on the dissolution kinetics of biogenic silica. Marine Chemistry, 1991, 35(1-4): 423-434. |
[24] | K. O. Buesseler. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles, 1998, 12(2): 297-310. |
[25] | D. S. Lawson, D. C. Hurd and H. S. Pank-ratz. Silica dissolution rates of decomposing phytoplankton assem-blages at various temperatures. American Journal of Science, 1978, 278: 1373- 1393. |
[26] | A. Kamatani, J. P. Riley. Rate of dissolution of diatom silica walls in seawater. Marine Biology, 1979, 55(1): 29-35. |
[27] | K. D. Bidle, F. Azam. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature, 1999, 397: 508-512. |
[28] | M. A. Brzezinski, D. R. Phillips. Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol-ogy Oceanography, 1997, 42(5): 856-865. |
[29] | D. M. Jacobson, D. M. Anderson. Thecate heterotrophic dino- flagellates: Feeding behavior and mechanism. Journal of Phycology, 1986, 22: 249-258. |
[30] | C. B. Miller, D. M. Nelson, C. Weiss, et al. Morphogenesis of opal teeth in calanoid copepods. Marine Biology, 1990, 106(1): 91-101. |
[31] | V. W. Truesdale, C. J. Smith. The auromatic determination of silicate dis-solved in natural freshwater by means of procedures in involving use of either α- or β-molydosilicic acid. Analyst, 1976, 101: 19-31. |
[32] | A. C. Lasaga, J. M. Soler, J. Ganor, et al. Chemical weathering rate laws and global geochemical cycles. Geochemistry Cosmochemistry Acta, 1994, 58(10): 2361-2386. |
[33] | E. Koning, et al. Settling dissolution and burial of biogenic silica in the sediments off Somalia (Northwest-ern of Indian Ocean). Deep Sea Research II, 1997, 44(6-7): 1341-1360. |