|
取代基对苯基格氏试剂电解液电化学性能的影响
|
Abstract:
[1] | [1] 郭炳琨, 李新海, 杨松青. 化学电源[M]. 长沙: 中南工业大学出版社, 2000. |
[2] | J. M. Tarascon, M. Armand. Issues and challenges facing re- chargeable lithium batteries. Nature, 2001, 414(6861): 359-367. |
[3] | T. D. Gregory, R. J. Hoffman and R. C. Winterton. Nonaqueous electrochemistry of magnesium applications to energy storage. Journal of the Electrochemical Society, 1990, 137(3): 775-780. |
[4] | D. Aurbach, Z. Lu, A. Schechter, et al. Prototype systems for re- chargeable magnesium batteries. Nature, 2000, 407(6805): 724- 727. |
[5] | N. Amir, Y. Vestfrid, O. Chusid, et al. Progress in nonaqueous magnesium electrochemistry. Journal of Power Sources, 2007, 174(2): 1234-1240. |
[6] | L. P. Lossiusb, F. Emmenegger. Plating of magnesium from or- ganic solvents. Electrochimica Acta, 1996, 41(3): 445-447. |
[7] | Z. Lu, A. Schechter, M. Moshkovich, et al. On the electro- chemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. Journal of Electroanalytical Chemistry, 1999, 466(2): 203-217. |
[8] | J. D. Genders, D. Pletcher. Studies using microelectrodes of the Mg(II)/Mg couple in tetrahydrofuran and propylene carbonate. Journal of Electroanalytical Chemistry, 1986, 199(1): 93-100. |
[9] | C. Liebenow. Reversibility of electrochemical magnesium depo- sition from Grignard solutions. Journal of Applied Electro- chemistry, 1997, 27(2): 221-225. |
[10] | D. Aurbach, Y. Cohen and M. Moshkovich. The study of rever- sible magnesium deposition by in situ scanning tunneling micro- scopy. Electrochemical and Solid-State Letters, 2001, 4(8): A113. |
[11] | D. Aurbach, A. Schechter, M. Moshkovich, et al. On the mechan- isms of reversible magnesium deposition processes. Journal of the Electrochemical Society, 2001, 148(9): A1004-A1014. |
[12] | D. Aurbach, T R. urgeman, O. Chusid, et al. Spectroelectro- chemical studies of magnesium deposition by in situ FTIR spec- troscopy. Electrochemistry Communications, 2001, 3(5): 252- 261. |
[13] | Y. S. Guo, J. Yang, Y. N. NuLi, et al. Study of electronic effect of Grignard reagents on their electrochemical behavior. Electro- chemistry Communications, 2010, 12(12): 1671-1673. |
[14] | D. Seyferth. The Grignard reagents. Organometallics, 2009, 28(6): 1598-1605. |
[15] | E. Lancry, E. Levi, A. Mitelman, et al. Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases. Journal of Solid State Chemistry, 2006, 179(6): 1879-1882. |
[16] | E. Lancry, E. Levi, Y. Gofer, et al. Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg bat- teries. Chemistry of Materials, 2004, 16(14): 2832-2838. |
[17] | G. Milazzo, S. Caroli, V. Sharma, et al. 标准电极电位数据手册[M]. 北京: 科学出版社, 1991. |
[18] | G. S. Silverman, P. E. Takita. Handbook of grignard reagents. New York: Marcel Dekker, 1996. |
[19] | W. V. Evans, R. Pearson. The ionic nature of the grignard rea- gent. Journal of the American Chemical Society, 1942, 64(12): 2865-2871. |
[20] | O. Chusid, Y. Gofer, H. Gizbar, et al. Solid-state rechargeable mag- nesium batteries. Advanced Materials, 2003, 15(7-8): 627-630. |