Quantitative structure-property relationship (QSPR) is performed as a means to predict octane number of hydrocarbons via correlating properties to parameters calculated from molecular structure; such parameters are molecular mass , hydration energy , boiling point , octanol/water distribution coefficient , molar refractivity , critical pressure , critical volume , and critical temperature . Principal component analysis (PCA) and multiple linear regression technique (MLR) were performed to examine the relationship between multiple variables of the above parameters and the octane number of hydrocarbons. The results of PCA explain the interrelationships between octane number and different variables. Correlation coefficients were calculated using M.S. Excel to examine the relationship between multiple variables of the above parameters and the octane number of hydrocarbons. The data set was split into training of 40 hydrocarbons and validation set of 25 hydrocarbons. The linear relationship between the selected descriptors and the octane number has coefficient of determination , statistical significance , and standard errors . The obtained QSPR model was applied on the validation set of octane number for hydrocarbons giving and . 1. Introduction Octane rating or octane number is a standard measure of the performance of gasoline fuel. The most common type of octane rating worldwide is the research octane number (RON) and motor octane number (MON). Octanes are a family of hydrocarbon that are typical components of gasoline. The octane rating of gasoline is measured in a test engine and is defined by comparison with the mixture of 2,2,4-trimethylpentane (isooctane) and heptane that would have the same antiknocking capacity as the gasoline fuel under test. For example, gasoline with the same knocking characteristics as a mixture of 90% isooctane and 10% heptane would have an octane rating of 90. The ASTM standard for reporting this measurement is an internal combustion engine in which octane is measured by interpolating between the nearest standards above and below the unknown sample [1]. The procedure is time consuming, involves expensive and maintenance intensive equipment, and requires skilled labour. A more thorough understanding of the relations between the structure of alkanes and their physicochemical properties and the empirical rules of octane number (ON) dependence on the structure of alkanes are discussed by A. Perdih and F. Perdih [2]. The relation between the structure of hydrocarbons and their octane was studied using a number of topological
References
[1]
Annual Book of ASTM Standards, vol. 05.04, 1985.
[2]
A. Perdih and F. Perdih, “Chemical interpretation of octane number,” Acta Chimica Slovenica, vol. 53, no. 3, pp. 306–315, 2006.
[3]
T. A. Albahri, “Structural group contribution method for predicting the octane number of pure hydrocarbon liquids,” Industrial and Engineering Chemistry Research, vol. 42, no. 3, pp. 657–662, 2003.
[4]
N. Nikolaou, C. E. Papadopoulos, I. A. Gaglias, and K. G. Pitarakis, “A new non-linear calculation method of isomerisation gasoline research octane number based on gas chromatographic data,” Fuel, vol. 83, no. 4-5, pp. 517–523, 2004.
[5]
H. Chung, H. Lee, and C.-H. Jun, “Determination of research octane number using NIR spectral data and ridge regression,” Bulletin of the Korean Chemical Society, vol. 22, no. 1, pp. 37–42, 2001.
[6]
H. Hosoya, “Chemical meaning of octane number analyzed by topological indices,” Croatica Chemica Acta, vol. 75, no. 2, pp. 433–445, 2002.
[7]
J. J. Kelly, C. H. Barlow, T. M. Jinguji, and J. B. Callis, “Prediction of gasoline octane numbers by near infrared spectroscopy in the spectral range 680–1235?nm,” Analytical Chemistry, vol. 61, no. 4, pp. 313–320, 1989.
[8]
R. Meusinger and R. Moros, “Determination of octane numbers of gasoline compounds from their chemical structure by 13C NMR spectroscopy and neural networks,” Fuel, vol. 80, no. 5, pp. 613–621, 2001.
[9]
M. A. Al-Ghouti, Y. S. Al-Degs, and M. Amer, “Determination of motor gasoline adulteration using FTIR spectroscopy and multivariate calibration,” Talanta, vol. 76, no. 5, pp. 1105–1112, 2008.
[10]
N. Pasadakis, V. Gaganis, and C. Foteinopoulos, “Octane number prediction for gasoline blends,” Fuel Processing Technology, vol. 87, no. 6, pp. 505–509, 2006.
[11]
J. Dcvillers, Comparative Qsar, Taylor & Francis, Philadelphia, Pa, USA, 1998.
[12]
L. B. Kiel and I. H. Hall, Molecular Structure Description, Academic Press, New York, NY, USA, 1999.
[13]
R. C. Reid, J. M. Prausnitz, and B. E. Polling, The Properties of Gases and Liquids, McGraw-Hill, New York, NY, USA, 1987.
[14]
M. M. C. Ferreira, “Multivariate QSAR,” Journal of the Brazilian Chemical Society, vol. 13, no. 6, pp. 742–753, 2002.
[15]
T. Abdel-Moghny, E. Ahmed Gad, and Y. Mostafa, “Effect of interfacially active fractions of some Egyptian crude oils on their emulsion stability,” Journal of Dispersion Science and Technology, vol. 27, no. 1, pp. 133–141, 2006.
[16]
E. A. M. Gad, “QSPR for nonionic surfactants,” Journal of Dispersion Science and Technology, vol. 28, no. 2, pp. 231–237, 2007.
[17]
E. A. M. Gad and K. S. Khairou, “QSPR for HLB of nonionic surfactants based on polyoxyethylene group,” Journal of Dispersion Science and Technology, vol. 29, no. 7, pp. 940–947, 2008.
[18]
E. A. Smolenskii, A. N. Ryzhov, V. M. Bavykin, T. N. Myshenkova, and A. L. Lapidus, “Octane numbers (ONs) of hydrocarbons: a QSPR study using optimal topological indices for the topological equivalents of the ONs,” Russian Chemical Bulletin, vol. 56, no. 9, pp. 1681–1693, 2007.