Solid supported 2D assembly of silver nanocubes was fabricated by Langmuir-Blodgett technique and employed to investigate its surface enhanced Raman scattering (SERS) and surface enhance fluorescence (SEF) activities by detecting Rh6G in solution of varied concentrations, that is, 10?12?M, 10?9?M, 10?6?M, and 10?3?M. SERS was detected from a nanomolar concentration of Rh6G whereas SEF was detected from a picomolar concentration. Further, the substrate was subjected to thermal annealing to fabricate plasmonic thin film. The formation of thin film was followed by monitoring its surface plasmon resonance spectra and atomic force microscopic images. It was observed that the characteristic spectral peaks of silver nanocubes merged into a broad spectral band as the annealing time was increased and the intensity of the band decreased with the formation of thin film. The obtained result implies that thermal annealing could be a simple approach to create nanoscale gaps in SERS substrate and to engineer continuous thin film from the assembly of discrete nanoparticles. 1. Introduction Plasmonic metal nanoparticles such as silver, gold, and copper are gaining interest due to their unique optical properties that find applications in numerous fields of technology [1–4]. Noble metal nanoparticles support surface plasmons, coherent oscillation of conduction band electrons, which can be excited by electromagnetic radiation to give rise to an intense electric field. Such phenomenon is called surface plasmon resonance (SPR) [5, 6]. At resonance condition, absorption of light by nanoparticles occurs which appears as absorption peaks in their absorption spectrum. The position of the peak is highly sensitive to the refractive index of the external medium in which nanoparticles are placed. The sensitivity of nanoparticle’s absorption peaks is the basis of SPR based molecular sensing [7–9]. In this context, two classes of surface plasmon resonance (SPR) are applied in sensing devices, for example, surface plasmon polariton (SPPs) and localized surface plasmon resonance (LSPRs). LSPR involves excitation of surface plasmons localized on the surface of discrete nanopartcle. SPPs involve excitation of surface plasmons that propagate along the nanoscale surface of a thin film of plasmonic materials [10, 11]. LSPR is employed to sense molecular events occurring in the vicinity of nanoparticle’s surface as the evanescent electric field exists within a few nanometers (~20?nm) of the surface [11–13]. However, SPPs are employed to sense molecular events in the bulk medium as the
References
[1]
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1578–1586, 2008.
[2]
B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Accounts of Chemical Research, vol. 40, no. 10, pp. 1067–1076, 2007.
[3]
H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” The Journal of Physical Chemistry B, vol. 109, no. 39, pp. 18218–18222, 2005.
[4]
A. F. Alvarez-Paneque, B. Rodríguez-González, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Shape-templated growth of Au@Cu nanoparticles,” Journal of Physical Chemistry C, vol. 117, no. 6, pp. 2474–2479, 2013.
[5]
H. A. Atwater, “The promise of plasmonics.,” Scientific American, vol. 296, no. 4, pp. 56–63, 2007.
[6]
E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science, vol. 311, no. 5758, pp. 189–193, 2006.
[7]
A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem, vol. 1, no. 1, pp. 18–52, 2000.
[8]
J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, vol. 377, no. 3, pp. 528–539, 2003.
[9]
H. J. Lee, Y. Li, A. W. Wark, and R. M. Corn, “Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays,” Analytical Chemistry, vol. 77, no. 16, pp. 5096–5100, 2005.
[10]
A. G. Brolo, “Plasmonics for future biosensors,” Nature Photonics, vol. 6, no. 11, pp. 709–713, 2012.
[11]
R. H. Ritchie, “Plasma losses by fast electrons in thin films,” vol. 106, pp. 874–881, 1957.
[12]
H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg, and W. Knoll, “Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies,” The Journal of Chemical Physics, vol. 98, no. 12, pp. 10093–10095, 1993.
[13]
W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annual Review of Physical Chemistry, vol. 49, no. 1, pp. 569–638, 1998.
[14]
R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Optics Communications, vol. 195, no. 1–4, pp. 107–118, 2001.
[15]
L. Yin, V. K. Vlasko-Vlasov, A. Rydh et al., “Surface plasmons at single nanoholes in Au films,” Applied Physics Letters, vol. 85, no. 3, pp. 467–469, 2004.
[16]
S. Coyle, M. C. Netti, J. J. Baumberg et al., “Confined plasmons in metallic nanocavities,” Physical Review Letters, vol. 87, no. 17, Article ID 176801, 2001.
[17]
C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature, vol. 445, no. 7123, pp. 39–46, 2007.
[18]
U. Huebner, H. Schneidewind, D. Cialla et al., “Fabrication of regular patterned SERS arrays by electron beam lithography,” in Biophotonics: Photonic Solutions for Better Health Care II, vol. 7715 of Proceedings of SPIE, p. 771536, 2010.
[19]
E. Pechkova, N. L. Bragazzi, and C. Nicoloni, “Advances in nanocrystallography as a proteomic tool,” Advances in Protein Chemistry and Structural Biology, vol. 95, pp. 163–191, 2014.
[20]
C. Nicolini, N. Bragazzi, and E. Pechkova, “Nanoproteomics enabling personalized nanomedicine,” Advanced Drug Delivery Reviews, vol. 64, no. 13, pp. 1522–1531, 2012.
[21]
N. L. Bragazzi, E. Pechkova, D. Scudieri, T. B. C. Terencio, M. Adami, and C. Nicolinia, “Recombinant laccase: II. Medical biosensor,” Critical Reviews in Eukaryotic Gene Expression, vol. 22, no. 3, pp. 197–203, 2012.
[22]
C. Nicolini, M. Adami, M. Sartore et al., “Prototypes of newly conceived inorganic and biological sensors for health and environmental applications,” Sensors, vol. 12, no. 12, pp. 17112–17127, 2012.
[23]
Y. Song and H. E. Elsayed-Ali, “Aqueous phase Ag nanoparticles with controlled shapes fabricated by a modified nanosphere lithography and their optical properties,” Applied Surface Science, vol. 256, no. 20, pp. 5961–5967, 2010.
[24]
Z. Wei, W. Xu, W. Hu, and D. Zhu, “Langmuir-blodgett monolayer as an efficient p-conducting channel of ambipolar organic transistors and a template for n-type molecular alignment,” Langmuir, vol. 25, no. 6, pp. 3349–3351, 2009.
[25]
P. Yang and F. Kim, “Langmuir-blodgett assembly of one-dimensional nanostructures,” ChemPhysChem, vol. 3, no. 6, pp. 503–506, 2002.
[26]
N. Ahamad and A. Ianoul, “Using phospholipids to control interparticle distance in SERS-active substrates,” The Journal of Physical Chemistry C, vol. 115, no. 9, pp. 3587–3594, 2011.
[27]
C. Yuan, J. Furlong, P. Burgos, and L. J. Johnston, “The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes,” Biophysical Journal, vol. 82, no. 5, pp. 2526–2535, 2002.
[28]
M. A. Mahmoud, C. E. Tabor, and M. A. El-Sayed, “Surface-enhanced raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir-Blodgett technique at different surface pressures,” The Journal of Physical Chemistry C, vol. 113, no. 14, pp. 5493–5501, 2009.
[29]
M. A. Mahmoud and M. A. El-Sayed, “Comparative study of the assemblies and the resulting plasmon fields of Langmuir-Blodgett assembled monolayers of silver nanocubes and gold nanocages,” Journal of Physical Chemistry C, vol. 112, no. 37, pp. 14618–14625, 2008.
[30]
A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Optics Express, vol. 19, no. 20, pp. 18742–18753, 2011.
[31]
Y. Saito, J. J. Wang, D. A. Smith, and D. N. Batchelder, “A simple chemical method for the preparation of silver surfaces for efficient SERS,” Langmuir, vol. 18, no. 8, pp. 2959–2961, 2002.
[32]
Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science, vol. 298, no. 5601, pp. 2176–2179, 2002.
[33]
N. Ahamad, A. Bottomley, and A. Ianoul, “Optimizing refractive index sensitivity of supported silver nanocube monolayers,” Journal of Physical Chemistry C, vol. 116, no. 1, pp. 185–192, 2012.
[34]
C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” The Journal of Physical Chemistry C, vol. 111, no. 10, pp. 3606–3619, 2007.
[35]
B. Gao, G. Arya, and A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nature Nanotechnology, vol. 7, no. 7, pp. 433–437, 2012.
[36]
A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angewandte Chemie, vol. 45, no. 28, pp. 4597–4601, 2006.
[37]
D. Pristinski, S. Tan, M. Erol, H. Du, and S. Sukhishvili, “In situ SERS study of Rhodamine 6G adsorbed on individually immobilized Ag nanoparticles,” Journal of Raman Spectroscopy, vol. 37, no. 7, pp. 762–770, 2006.
[38]
P. Hildebrandt and M. Stockhurger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” The Journal of Physical Chemistry, vol. 88, no. 24, pp. 5935–5944, 1984.
[39]
C. E. Reed, J. Giergiel, S. Ushioda, and J. C. Hemminger, “Effects of annealing on the attenuated-total-reflection spectra of cold-evaporated silver films,” Physical Review B, vol. 31, no. 4, pp. 1873–1880, 1985.
[40]
P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Physical Review B, vol. 35, no. 8, pp. 3753–3759, 1987.
[41]
G. Andreasen, P. L. Schilardi, O. Azzaroni, and R. C. Salvarezza, “Thermal annealing of patterned metal surfaces,” Langmuir, vol. 18, no. 26, pp. 10430–10434, 2002.
[42]
S. E. Roark, D. J. Semin, and K. L. Rowlen, “Quantitative evaluation of SERS-active Ag film nanostructure by atomic force microscopy,” Analytical Chemistry, vol. 68, no. 3, pp. 473–480, 1996.
[43]
H. Bi, W. Cai, L. Zhang, D. Martin, and F. Tr?ger, “Annealing-induced reversible change in optical absorption of Ag nanoparticles,” Applied Physics Letters, vol. 81, no. 27, pp. 5222–5224, 2002.
[44]
I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chemistry of Materials, vol. 16, no. 18, pp. 3476–3483, 2004.
[45]
D. J. Semin and K. L. Rowlen, “Influence of vapor deposition parameters on SERS active Ag film morphology and optical properties,” Analytical Chemistry, vol. 66, no. 23, pp. 4324–4331, 1994.
[46]
A. Feofanov, A. Ianoul, E. Kryukov et al., “Nondisturbing and stable SERS-active substrates with increased contribution of long-range component of Raman enhancement created by high-temperature annealing of thick metal films,” Analytical Chemistry, vol. 69, no. 18, pp. 3731–3740, 1997.
[47]
N. Ahamad, M. Al- Amin, and A. Ianoul, “Distance dependent surface enhanced Raman and fluorescence by supported 2D assembly of plasmonic metal nanoparticles,” Asian Journal of Chemistry, vol. 25, no. 16, pp. 9226–9232, 2013.
[48]
M. Litorja, C. L. Haynes, A. J. Haes, T. R. Jensen, and R. P. van Duyne, “Surface-enhanced Raman scattering detected temperature programmed desorption: optical properties, nanostructure, and stability of silver film over SiO2 nanosphere surfaces,” The Journal of Physical Chemistry B, vol. 105, no. 29, pp. 6907–6915, 2001.
[49]
J.-H. Yoo and S.-W. Lee, “Fabrication and characterization of quantum dots-bound hydrogels with fluorescent and temperature-sensitive functionalities,” Journal of Nanoscience and Nanotecnology, vol. 14, no. 10, pp. 7648–7653, 2014.
[50]
M. I. J. Stich, L. H. Fischer, and O. S. Wolfbeis, “Multiple fluorescent chemical sensing and imaging,” Chemical Society Reviews, vol. 39, no. 8, pp. 3102–3114, 2010.
[51]
L. Sun, J. Yu, H. Peng, J. Z. Zhang, L. Shi, and O. S. Wolfbeis, “Temperature-sensitive luminescent nanoparticles and films based on a terbium (III) complex probe,” The Journal of Physical Chemistry C, vol. 114, no. 29, pp. 12642–12648, 2010.