A series of boron-doped TiO2 photocatalysts (2% B-TiO2) with different water/alkoxide molar ratio were synthesized by conventional sol-gel method. The prepared samples were characterized by BET measurement, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIRS), and diffuse-reflectance UV-vis. The phase anatase was present, but unexpectedly a small amount of rutile phase was formed with low and excess water in the synthesis. Additionally it has been observed that the increase in the molar ratio of water significantly increases the values of band gap energy and the specific surface area. Results showed that degradation of Orange II azo dye increases with surface area, particle size, boron, and water content in photocatalysis. The boron species were introduced in the tricoordinated form. 1. Introduction Current emission of pollutants from textile industry to different bodies of water is a serious problem, not only since this industry uses large volumes of water, but also because most of these dyes are resistant to the conventional wastewater treatment processes. Different emerging technologies have been tested to try to solve this problem; among them, the advanced oxidation processes such as heterogeneous photocatalysis employing TiO2 have demonstrated to be the most viable alternative to eliminate several organic contaminants [1, 2]. On the other hand titanium dioxide (TiO2) has attracted growing scientific interest due to its good chemical and photochemical stability, nontoxicity, availability, low price, or ease of synthesis. However the structural, electronic, and photocatalytic properties of TiO2 depend on the method of synthesis, while the size, morphology, and microstructure of crystals can be controlled and modified during hydrolysis and condensation steps [2–4]; that is, the water content changes the rate of hydrolysis. In order to improve its photocatalytic activity and shift its absorption band towards the visible region, several attempts have been also made to narrow the band gap energy by doping with various metals ions [5, 6], where it is suggested that the incorporation of metal to TiO2 structure modifies both the charge carriers recombination rate and the interfacial electron-transfer rate, as well as the generation of recombination sites or the band gap energy, depending on where these ions are located in the TiO2 structure. On the other hand the doping of TiO2 with non metals atoms such as carbon, nitrogen or boron atoms [7–12] have shown a higher photoactivity performance under visible light irradiation. The
References
[1]
N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, and M. Z. C. Hu, “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions,” Industrial and Engineering Chemistry Research, vol. 38, no. 2, pp. 373–379, 1999.
[2]
K. Natarajan, T. S. Natarajan, H. C. Bajaj, and R. J. Tayade, “Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes,” Chemical Engineering Journal, vol. 178, pp. 40–49, 2011.
[3]
H. Lee, M. Choi, Y. Kye, M. An, and I. M. Lee, “Control of particle characteristics in the preparation of TiO2 nano particles assisted by microwave,” Bulletin of the Korean Chemical Society, vol. 33, no. 5, pp. 1699–1702, 2012.
[4]
E. Kim, D. S. Kim, and B. Ahn, “Synthesis of Mesoporous TiO2 and its application to photocatalytic activation of methylene blue and E. coli,” Bulletin of the Korean Chemical Society, vol. 30, no. 1, pp. 193–198, 2009.
[5]
R. J. Tayade, H. C. Bajaj, and R. V. Jasra, “Photocatalytic removal of organic contaminants from water exploiting tuned bandgap photocatalysts,” Desalination, vol. 275, no. 1–3, pp. 160–165, 2011.
[6]
R. J. Tayade, R. G. Kulkarni, and R. V. Jasra, “Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water,” Industrial and Engineering Chemistry Research, vol. 45, no. 15, pp. 5231–5238, 2006.
[7]
H. Irie, Y. Watanabe, and K. Hashimoto, “Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst,” Chemistry Letters, vol. 32, no. 8, pp. 772–773, 2003.
[8]
S. Yang and L. Gao, “New method to prepare nitrogen-doped titanium dioxide and its photocatalytic activities irradiated by visible light,” Journal of the American Ceramic Society, vol. 87, no. 9, pp. 1803–1805, 2004.
[9]
H. Liu and L. Gao, “(Sulfur, nitrogen)-codoped rutile-titanium dioxide as a visible-light-activated photocatalyst,” Journal of the American Ceramic Society, vol. 87, no. 8, pp. 1582–1584, 2004.
[10]
S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002.
[11]
T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping,” Applied Physics Letters, vol. 81, no. 3, pp. 454–456, 2002.
[12]
J. C. Yu, W. Ho, Z. Jiang, and L. Zhang, “Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders,” Chemistry of Materials, vol. 14, no. 9, pp. 3808–3816, 2002.
[13]
A. L. Linsebigler, G. Lu, and J. T. Yates Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995.
[14]
A. C. Pierre, Introduction to Sol-Gel Processing, Kluwer Academic Publishers, 2002.
[15]
E. Grabowska, A. Zaleska, J. W. Sobczak, M. Gazda, and J. Hupka, “Boron-doped TiO2: characteristics and photoactivity under visible light,” Procedia Chemistry, vol. 1, no. 2, pp. 1553–1559, 2009.
[16]
D. Chen, D. Yang, Q. Wang, and Z. Jiang, “Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles,” Industrial and Engineering Chemistry Research, vol. 45, no. 12, pp. 4110–4116, 2006.
[17]
W. Zhang, X. Li, G. Jia et al., “Preparation, characterization, and photocatalytic activity of boron and lanthanum co-doped TiO2,” Catalysis Communications, vol. 45, pp. 144–147, 2014.
[18]
C. C. Wang and J. Y. Ying, “Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals,” Chemistry of Materials, vol. 11, no. 11, pp. 3113–3120, 1999.
[19]
X. Ding, Z. Qi, and Y. He, “Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process,” Journal of Materials Science Letters, vol. 14, no. 1, pp. 21–22, 1995.
[20]
W. Zhang, B. Yang, and J. Chen, “Effects of calcination temperature on preparation of boron-doped TiO2 by sol-gel method,” International Journal of Photoenergy, vol. 2012, Article ID 528637, 8 pages, 2012.
[21]
W. Zhang, X. Pei, B. Yang, and H. He, “Effects of boron content and calcination temperature on properties of B-TiO2 photocatalyst prepared by solvothermal method,” Journal of Advanced Oxidation Technologies, vol. 17, no. 1, pp. 66–72, 2014.
[22]
V. ?tengl, V. Hou?kova, S. Bakardjieva, and N. Murafa, “Photocatalytic activity of boron-modified titania under UV and visible-light illumination,” ACS Applied Materials and Interfaces, vol. 2, no. 2, pp. 575–580, 2010.
[23]
A. Weibel, R. Bouchet, F. Boulc'h, and P. Knauth, “The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders,” Chemistry of Materials, vol. 17, no. 9, pp. 2378–2385, 2005.
[24]
B. I. Stefanov, Z. Topalian, C. G. Granqvist, and L. ?sterlund, “Acetaldehyde adsorption and condensation on anatase TiO2: influence of acetaldehyde dimerization,” Journal of Molecular Catalysis A: Chemical, vol. 381, pp. 77–88, 2014.
[25]
X. Wang, M. Blackford, K. Prince, and R. A. Caruso, “Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity,” ACS Applied Materials and Interfaces, vol. 4, no. 1, pp. 476–482, 2012.
[26]
P. Carmichael, D. Hazafy, D. S. Bhachu, A. Mills, J. A. Darr, and I. P. Parkin, “Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation,” Physical Chemistry Chemical Physics, vol. 15, pp. 16788–16794, 2013.
[27]
N. Feng, A. Zheng, Q. Wang et al., “Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study,” Journal of Physical Chemistry C, vol. 115, no. 6, pp. 2709–2719, 2011.
[28]
A. Zaleska, J. W. Sobczak, E. Grabowska, and J. Hupka, “Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light,” Applied Catalysis B: Environmental, vol. 78, no. 1-2, pp. 92–100, 2008.
[29]
C.-H. Wei, X.-H. Tang, J.-R. Liang, and S.-Y. Tan, “Preparation, characterization and photocatalytic activities of boron- and cerium-codoped TiO2,” Journal of Environmental Sciences, vol. 19, no. 1, pp. 90–96, 2007.
[30]
C. Yu, J. C. Yu, W. Zhou, and K. Yang, “WO3 coupled P-TiO2 photocatalysts with mesoporous structure,” Catalysis Letters, vol. 140, no. 3-4, pp. 172–183, 2010.
[31]
N. Lu, X. Quan, J. Li, S. Chen, H. Yu, and G. Chen, “Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability,” The Journal of Physical Chemistry C, vol. 111, no. 32, pp. 11836–11842, 2007.
[32]
Y. Wu, M. Xing, and J. Zhang, “Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity,” Journal of Hazardous Materials, vol. 192, no. 1, pp. 368–373, 2011.
[33]
A. Zaleska, E. Grabowska, J. W. Sobczak, M. Gazda, and J. Hupka, “Photocatalytic activity of boron-modified TiO2 under visible light: The effect of boron content, calcination temperature and TiO2 matrix,” Applied Catalysis B Environmental, vol. 89, no. 3-4, pp. 469–475, 2009.
[34]
N. O. Gopal, H. Lo, and S. Ke, “Chemical state and environment of boron dopant in B,N-codoped anatase TiO2 nanoparticles: an avenue for probing diamagnetic dopants in TiO2 by electron paramagnetic resonance spectroscopy,” Journal of the American Chemical Society, vol. 130, no. 9, pp. 2760–2761, 2008.