Using Random Amplified Polymorphic DNA to Assess Genetic Diversity and Structure of Natural Calophyllum brasiliense (Clusiaceae) Populations in Riparian Forests
The objective of this study was to assess the genetic variability in two natural populations of Calophyllum brasiliense located along two different rivers in the state of Minas Gerais, Brazil, using RAPD molecular markers. Eighty-two polymorphic fragments were amplified using 27 primers. The values obtained for Shannon index ( ) were 0.513 and 0.530 for the populations located on the margins of the Rio Grande and Rio das Mortes, respectively, demonstrating the high genetic diversity in the studied populations. Nei’s genetic diversity ( ) was 0.341 for the Rio Grande population and 0.357 for the Rio das Mortes population. These results were not significantly different between populations and suggest a large proportion of heterozygote individuals within both populations. AMOVA showed that 70.42% of the genetic variability is found within populations and 29.58% is found among populations ( ). The analysis of kinship coefficients detected the existence of family structures in both populations. Average kinship coefficients between neighboring individuals were 0.053 ( ) in Rio das Mortes and 0.040 ( ) in Rio Grande. This could be due to restricted pollen and seed dispersal and the history of anthropogenic disturbance in the area. These factors are likely to contribute to the relatedness observed among these genotypes. 1. Introduction Of all the ecosystems that constitute the Brazilian Semideciduous Forests, riparian forests contribute significantly to the conservation of biodiversity, mainly due to the relationship between ecological corridors and ecosystem functioning [1]. Because of their interconnectedness, riparian forests play a central role in biogeographical and evolutionary shifts as they facilitate seed dispersal [2]. In Brazil, even though riparian forests are protected by law in the Forest Code (Law 4.771 of 1965), these environments suffer the consequences of human activity, mainly resulting from fragmentation and degradation. The reduction of population sizes and the isolation of populations are direct consequences of anthropogenic activities, resulting in inbreeding and genetic drift [3, 4]. Understanding the distribution of genetic variability of tree populations in these areas is fundamental in management programs aimed at conservation and the survival of riparian forest species. There are a large number of tree species that occur in riparian forests and as such the choice of the target species for genetic and ecological studies is crucial. Among them, Calophyllum brasiliense Camb. (Clusiaceae), a Neotropical tree commonly known as “guanandi,”
References
[1]
G. Viegas, C. Stenert, U. H. Schulz, and L. Maltchik, “Dung beetle communities as biological indicators of riparian forest widths in southern Brazil,” Ecological Indicators, vol. 36, pp. 703–710, 2014.
[2]
E. Imbert and F. Lefèvre, “Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system,” Journal of Ecology, vol. 91, no. 3, pp. 447–456, 2003.
[3]
P. R. Aldrich and J. L. Hamrick, “Reproductive dominance of pasture trees in a fragmented tropical forest mosaic,” Science, vol. 281, no. 5373, pp. 103–105, 1998.
[4]
D. Couvet, “Deleterious effects of restricted gene flow in fragmented populations,” Conservation Biology, vol. 16, no. 2, pp. 369–376, 2002.
[5]
E. Fischer and F. A. M. dos Santos, “Demography, phenology and sex of Calophyllum brasiliense (Clusiaceae) trees in the Atlantic forest,” Journal of Tropical Ecology, vol. 17, no. 6, pp. 903–909, 2001.
[6]
I. Sazima, W. A. Fischer, M. Sazima, and E. A. Fischer, “The fruit bat Artibeus lituratus as a forest and city dweller,” Ciência e Cultura, vol. 46, pp. 164–168, 1994.
[7]
M. C. M. Marques and C. A. Joly, “Germina??o e crescimento de Calophyllum brasiliense (Clusiaceae), uma espécie típica de florestas inundadas,” Acta Botanica Brasílica, vol. 14, pp. 113–120, 2000.
[8]
T. Blanco-Ayala, R. Lugo-Huitrón, E. M. Serrano-López et al., “Antioxidant properties of xanthones from Calophyllum brasiliense: prevention of oxidative damage induced by FeSO4,” BMC Complementary and Alternative Medicine, vol. 13, p. 262, 2013.
[9]
R. B. Torres, L. A. F. Matthes, R. R. Rodrigues, and H. F. Leit?o-Filho, “Espécies florestais nativas para plantio em áreas de brejo,” O Agron?mico, vol. 44, pp. 13–16, 1992.
[10]
M. A. González-Pérez, P. A. Sosa, and F. J. Batista, “Genetic variation and conservation of the endangered endemic Anagyris latifolia Brouss. ex Willd. (Leguminosae) from the Canary Islands,” Plant Systematics and Evolution, vol. 279, no. 1–4, pp. 59–68, 2009.
[11]
?. ?zbek and A. Kara, “Genetic variation in natural populations of Capparis from Turkey, as revealed by RAPD analysis,” Plant Systematics and Evolution, vol. 299, pp. 1911–1933, 2013.
[12]
J. G. K. Williams, A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey, “DNA polymorphisms amplified by arbitrary primers are useful as genetic markers,” Nucleic Acids Research, vol. 18, no. 22, pp. 6531–6535, 1990.
[13]
C. D. Cruz, Programa GENES—vers?o Windows, UFV, Vi?osa, Minas Gerais, Brazil, 2001.
[14]
J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika, vol. 29, pp. 1–27, 1964.
[15]
A. Young, D. Boshier, and T. Boyle, Forest Conservation Genetics, CSIRO Publishing, Melbourne, Australia, 2000.
[16]
D. S. Schineider, L. Roesslli, and L. Excoffier, Arlequin ver: A Software for Population Genetics Data Analysis, Genetics and Biometry Laboratory /University of Geneva, Geneva, Switzerland, 2000.
[17]
B. S. Weir, Genetic Data Analysis: 2—Methods for Discrete Population Genetic Data, North Carolina State University/Sinauer Associates, Suderland, UK, 1996.
[18]
M. R. Anderberg, Cluster Analysis for Applications, Academic Press, New York, NY, USA, 1973.
[19]
P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy: The Principles and Practice of Numerical Classification, W. H. Freeman, San Francisco, Calif, USA, 1973.
[20]
B. F. J. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology, Chapman & Hall, London, UK, 2nd edition, 1997.
[21]
F. J. Rohlf, “Numerical taxonomy and multivariate analysis system,” New York, NY, USA, version 1.70, 470 pages , 1992.
[22]
N. Mantel, “The detection of disease clustering and a generalized regression approach,” Cancer Research, vol. 27, no. 2, pp. 209–220, 1967.
[23]
O. J. Hardy, “Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers,” Molecular Ecology, vol. 12, no. 6, pp. 1577–1588, 2003.
[24]
A. M. Souza, Estrutura genética de popula??es naturais de Calophyllum brasiliense Camb. na bacia do alto Rio Grande, UFLA, Tese (Doutorado), Lavras, Brazil, 2006.
[25]
X. Vekemans and O. J. Hardy, “New insights from fine-scale spatial genetic structure analyses in plant populations,” Molecular Ecology, vol. 13, no. 4, pp. 921–935, 2004.
[26]
O. J. Hardy and X. Vekemans, “SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels,” Molecular Ecology Notes, vol. 2, no. 4, pp. 618–620, 2002.
[27]
S. M. P. C. Pigato and C. R. Lopes, “Avalia??o da variabilidade genética em quatro gera??es de Eucalyptus urophylla S.T. Blake por meio do marcador molecular RAPD,” Scientia Florestalis, vol. 60, pp. 119–113, 2001.
[28]
L. Zimback, E. S. Mori, P. Y. Kageyama, R. F. A. Veiga, and J. R. S. Mello Júnior, “Estrutura genética de popula??es de Trichillia pallida Swartz (Meliaceae) por marcadores RAPD,” Scientia Florestalis, vol. 65, pp. 114–119, 2004.
[29]
Z. Wang, S. An, H. Liu, X. Leng, J. Zheng, and Y. Liu, “Genetic structure of the endangered plant Neolitsea sericea (Lauraceae) from the Zhoushan archipelago using RAPD markers,” Annals of Botany, vol. 95, no. 2, pp. 305–313, 2005.
[30]
J. M. D. Torezan, R. F. de Souza, P. M. Ruas, C. de Fátima Ruas, E. H. Camargo, and A. L. L. Vanzela, “Genetic variability of pre and post-fragmentation cohorts of Aspidosperma polyneuron Muell. Arg. (Apocynaceae),” Brazilian Archives of Biology and Technology, vol. 48, no. 2, pp. 171–180, 2005.
[31]
D. T. Phong, V. T. Hien, T. T. Thanh, and D. V. Tang, “Comparison of RAPD and ISSR markers for assessment of genetic diversity among endangered rare Dalbergia oliveri (Fabaceae) genotypes in Vietnam,” Genetic and Molecular Research, vol. 10, no. 4, pp. 2382–2393, 2011.
[32]
R. A. Estopa, A. M. Souza, C. O. M. Moura, M. C. G. Botrel, E. G. Mendon?a, and D. Carvalho, “Diversidade genética em popula??es naturais de candeia (Eremanthus erytropapus (DC.) MacLeish),” Scientia Florestalis, vol. 70, pp. 97–106, 2006.
[33]
D. R. Lacerda, M. D. P. Acedo, J. P. L. Filho, and M. B. Lovato, “Genetic diversity and structure of natural populations of Plathymenia reticulata (Mimosoideae), a tropical tree from the Brazilian Cerrado,” Molecular Ecology, vol. 10, no. 5, pp. 1143–1152, 2001.
[34]
L. Zhang, H. G. Zhang, and X. F. Li, “Analysis of genetic diversity in Larix gmelinii (Pinaceae) with RAPD and ISSR markers,” Genetics and Molecular Research, vol. 12, no. 1, pp. 196–207, 2013.
[35]
A. C. M. Gillies, C. Navarro, A. J. Lowe et al., “Genetic diversity in mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs,” Heredity, vol. 83, no. 6, pp. 722–732, 1999.
[36]
M. D. G. Trindade and L. J. Chaves, “Genetic structure of natural Eugenia dysenterica DC (Myrtaceae) populations in northeastern Goiás, Brazil, accessed by morphological traits and RAPD markers,” Genetics and Molecular Biology, vol. 28, no. 3, pp. 407–413, 2005.
[37]
M. I. Zucchi, J. B. Pinheiro, L. J. Chaves et al., “Genetic structure and gene flow of Eugenia dysenterica natural populations,” Pesquisa Agropecuaria Brasileira, vol. 40, no. 10, pp. 975–980, 2005.
[38]
M. A. Cardoso, J. Provan, W. Powell, P. C. G. Ferreira, and D. E. de Oliveira, “High genetic differentiation among remnant populations of the endangered Caesalpinia echinata Lam. (Leguminosae-Caesalpinioideae),” Molecular Ecology, vol. 7, no. 5, pp. 601–608, 1998.
[39]
M. A. R. Mello, N. O. Leiner, P. R. Guimar?es Jr., and P. Jordano, “Size-based fruit selection of Calophyllum brasiliense (Clusiaceae) by bats of the genus Artibeus (Phyllostomidae) in a Restinga area, southeastern Brazil,” Acta Chiropterologica, vol. 7, no. 1, pp. 179–182, 2005.
[40]
S. Wright, Evolution and the Genetics of Populations: Variability within and among Natural Populations, vol. 4, University of Chicago Press, Chicago, Ill, USA, 1978.
[41]
J. L. Hamrick and J. D. Nason, “Consequences of dispersal in plants,” in Population Dynamics in Ecological Space and Time, O. E. Rhodes Jr., R. K. Chesser, and M. H. Smith, Eds., pp. 203–236, University of Chicago Press, Chicago, Ill, USA, 1996.
[42]
B. A. Loiselle, V. L. Sork, J. Nason, and C. Graham, “Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae),” The American Journal of Botany, vol. 82, no. 11, pp. 1420–1425, 1995.
[43]
S. Kalisz, J. D. Nason, F. M. Hanzawa, and S. J. Tonsor, “Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection,” Evolution, vol. 55, no. 8, pp. 1560–1568, 2001.
[44]
S. Wright, “Isolation by distance,” Genetics, vol. 28, pp. 114–138, 1943.
[45]
B. K. Epperson, “Spatial patterns of genetic variation within plant populations,” in Plant Population Genetics, Breeding, and Genetic Resources, A. H. D. Brown, M. T. Clegg, A. L. Kahler, and B. S. Weir, Eds., pp. 229–253, Sinauer Associates, Sunderland, Mass, USA, 1990.