全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Different Pretreatments to the Seed on Seedling Emergence and Growth of Acacia polyacantha

DOI: 10.1155/2014/583069

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acacia polyacantha Willd. is a multipurpose tree species prioritised as one of the agroforestry tree species in Malawi. However, its use in agroforestry practices is limited by the low seedling growth and survival at the nursery stage. A study was conducted to evaluate the seedling growth and survival of Acacia polyacantha as affected by different pretreatments on the seeds at Malawi College of Forestry and Wildlife nursery, Malawi. Seeds were subjected to five presowing seed treatments methods, namely, immersion in cold water at room temperature for 24 hours, immersion in hot water (100°C) for 5 minutes, immersion in concentrated sulfuric acid (0.3?M H2SO4) for 20 minutes, scarification by mechanically nicking using secateurs, and a control where seeds were sown without any treatment. The results indicate that presowing seed treatments have positive influence on the seedling growth and survival percentage. Nicked seeds exhibited the highest significant ( ) performance for vegetative characteristics of height, root collar diameter, number of leaves, and survival percentage compared to other pretreatments. Therefore, it is suggested to use nicking as a pretreatment method on Acacia polyacantha seeds in order to enhance the speed and the amount of early seedling growth at the nursery stage. 1. Introduction Seed germination and early seedling growth phases are considered critical for raising a successful crop as they directly determine the crop stand density and consequently the yield of resultant crop [1]. It is indicated that seed germination, seedling growth, and survival percentage are governed by many intrinsic and extrinsic factors and are species specific [2, 3]. Numerous trees have been identified as fast growing and are categorized as high biomass yielders, while many of the tree species have seeds which possess hard seed coats that are impermeable to water; thus, they cannot germinate under normal condition [4]. Therefore, studies on factors that affect germination, survival percentage, and seedling growth for a particular tree species are required. Acacia polyacantha Willd. is an important multipurpose tree species belonging to the family of Fabaceae and subfamily Mimosoideae [4]. Acacia polyacantha is a large, deciduous tree that grows to an average height of 3.5–20?m and 3–10?cm diameter at breast height. Its seeds pods are sweetly scented and borne in spikes, which arise from the nodes. The seed pod appears singly or in clusters of up to four. The number of seeds per pod varies from 3 to 10 and is fairly flattened and dark brown when ripe.

References

[1]  M. A. Hossain, M. K. Aref, B. M. Khan, and M. A. Rahman, “ffects of seed treatments on germination and seedling growth attributes of Horitika (Terminalia chebula Retz.) in the nursery,” Research Journal of Agriculture and Biological Sciences, vol. 1, pp. 135–141, 2005.
[2]  R. P. Gunaga, D. Doddabasava, and R. Vasudeva, “Influence of seed size on germination and seedling growth in Mammea suriga,” Karnataka Journal of Agriculture and Science, vol. 24, pp. 415–416, 2011.
[3]  K. S. Murali, “Patterns of seed size, germination and seed viability of tropical tree species in Southern India,” Biotropica, vol. 29, no. 3, pp. 271–279, 1997.
[4]  R. Dhupper, “Effect of seed pre-treatment on survival percentage of three desert tree species,” Journal of Environmental Science, Computer Science and Engineering and Technology, vol. 2, pp. 776–786, 2013.
[5]  T. Chanyenga, “Germination of pre-treated Acacia polyacantha (Willd.) seed under nursery conditions at FRIM in Zomba, Malawi,” Report No. 06001, Forestry Research Institute of Malawi, Zomba, Malawi, 2006.
[6]  M. C. Palgrave, Trees of Southern Africa, Struik, 3rd edition, 2002.
[7]  E. N. Chidumayo, “Demographic implications of life history stage characteristics in two African acacias at a Makeni savanna plot in Zambia,” Journal of Plant Ecology, vol. 1, pp. 217–225, 2008.
[8]  J. S. Pullinger and A. M. Kitchin, Trees of Malawi, Blantyre Print and Publishing, Blantyre, Malawi, 1982.
[9]  H. P. Msanga, Seed Germination of Indigenous Trees in Tanzania, UBC Press, Ontario, Canada, 2000.
[10]  M. G. Likoswe, J. P. Njoloma, W. F. Mwase, and C. Z. Chilima, “Effect of seed collection times and pretreatment methods on germination of Terminalia sericea Burch.,” African Journal of Biotechnology, vol. 7, no. 16, pp. 2840–2846, 2008.
[11]  M. Z. Abideen, K. Gopikumar, and V. Jamaludheen, “Effect of Seed Character and its Nutrient content on vigour of Seedlings in Pongamia pinnata and Tamarindas indica,” My Forest Journal, vol. 29, pp. 225–230, 1993.
[12]  J. D. Maguire, “Speed of germination aid in selection and evaluation for seedling emergency and vigor,” Crop Science, vol. 2, pp. 176–177, 1962.
[13]  SAS, 9.1.3 Qualification Tools User's Guide, SAS Institute, Cary, NC, USA, 2004.
[14]  M. S. Azad, N. K. Paul, and A. Matin, “Do pre-sowing treatments affect seed germination in Albizia richardiana and Lagerstroemia speciosa?” Frontiers of Agriculture in China, vol. 4, no. 2, pp. 181–184, 2010.
[15]  M. S. Azad, M. R. Manik, M. S. Hasan, and M. A. Matin, “Effect of different pre-sowing treatments on seed germination percentage and growth performance of Acacia auriculiformis,” Journal of Forestry Research, vol. 22, no. 2, pp. 183–188, 2011.
[16]  W. F. Mwase and T. Mvula, “Effect of seed size and pre-treatment methods of Bauhinia thonningii Schum. on germination and seedling growth,” African Journal of Biotechnology, vol. 10, no. 26, pp. 5143–5148, 2011.
[17]  E. Missanjo, C. Maya, D. Kapira, H. Banda, and G. Kamanga-Thole, “Effect of seed size and pretreatment methods on germination of Albizia lebbeck,” ISRN Botany, vol. 2013, Article ID 969026, 4 pages, 2013.
[18]  D. Olatunji, J. O. Maku, and O. P. Odumefun, “The effect of pre-treatments on the germination and early seedlings growth of Acacia auriculiformis Cunn. Ex. Benth,” African Journal of Plant Science, vol. 7, pp. 325–330, 2013.
[19]  M. Alamgir and M. K. Hossain, “Effect of pre-sowing treatments on germination and initials seedling development of Albizia saman in the nursery,” Journal of Forestry Research, vol. 16, pp. 200–204, 2005.
[20]  B. E. Ayisire, L. A. Akinro, and S. O. Amoo, “Seed germination and in vitro propagation of Piliostigma thonningii—an important medicinal plant,” African Journal of Biotechnology, vol. 8, no. 3, pp. 401–404, 2009.
[21]  Y. Tian, B. Guan, D. Zhou, J. Yu, G. Li, and Y. Lou, “Responses of seed germination, seedling growth, and seed yield effect of seed size traits to seed pre-treatment in Maize (Zea mays L.),” The Scientific World Journal, vol. 2014, Article ID 834630, 8 pages, 2014.
[22]  C. Y. R. Munthali, Seed and seedling variation OF pterocarpus angolensis DC from selected natural population of Malawi [Ph.D. thesis], University of Stellenbosch, Stellenbosch, South Africa, 1999.
[23]  J. P. Mwitwa, C. R. Y. Munthali, and G. Van Wyk, “Half-sib family variation in shoot and root traits of seedlings of Pterocarpus angolensis (family: Fabaceae; syn. Papilionaceae),” Southern Hemisphere Forestry Journal, vol. 69, no. 2, pp. 91–94, 2007.
[24]  M. S. Azad, M. W. Islam, M. A. Matin, and Z. A. Musa, “Effect of pre-sowing treatment on seed germination of Albizia lebbeck (L.) Benth,” South Asian Journal of Agriculture, vol. 1, pp. 32–34, 2006.
[25]  M. Ali, S. Akhter, and M. Kamaluddin, “Study on the bearing of hot water treatment on seed germination and seedling growth of Albizia procera benth,” Indian Forester, vol. 123, no. 8, pp. 764–768, 1997.
[26]  L. L. El-Juhany, I. M. Aref, and M. A. Al-Ghamdi, “Effects of different pre-treatments on seed germination and early establishment of the seedlings of Juniperus procera trees,” World Application Science Journal, vol. 7, pp. 616–624, 2009.
[27]  E. Pipinis, E. Milios, P. Smiris, and C. Gioumousidis, “Effect of acid scarification and cold moist stratification on the germination of Cercis siliquastrum L. seeds,” Turkish Journal of Agriculture and Forestry, vol. 35, no. 3, pp. 259–264, 2011.
[28]  B. Duguma, B. T. Kaiw, and D. U. U. Okali, “Factors affecting germination of Leucaenia leucocephala,” Seed Science Technology, vol. 16, pp. 489–500, 1988.
[29]  A. M. Aduradola and M. A. Shinkafi, “Aspects of seed treatment for germination in Termarindus indica Linn,” ASSET Series A, vol. 33, pp. 29–34, 2003.
[30]  M. S. Azad, R. K. Biswas, and M. A. Matin, “Seed germination of Albizia procera (Roxb.) Benth. in Bangladesh: a basis for seed source variation and pre-sowing treatment effect,” Forestry Studies in China, vol. 14, no. 2, pp. 124–130, 2012.
[31]  L. Schmidt, Guide to Handling of Tropical and Subtropical Forest Seeds, Danida Forest Seed Centre, Humlebaeck, Denmark, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133