全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Novel Vision Sensing System for Tomato Quality Detection

DOI: 10.1155/2014/184894

Full-Text   Cite this paper   Add to My Lib

Abstract:

Producing tomato is a daunting task as the crop of tomato is exposed to attacks from various microorganisms. The symptoms of the attacks are usually changed in color, bacterial spots, special kind of specks, and sunken areas with concentric rings having different colors on the tomato outer surface. This paper addresses a vision sensing based system for tomato quality inspection. A novel approach has been developed for tomato fruit detection and disease detection. Developed system consists of USB based camera module having 12.0 megapixel interfaced with ARM-9 processor. Zigbee module has been interfaced with developed system for wireless transmission from host system to PC based server for further processing. Algorithm development consists of three major steps, preprocessing steps like noise rejection, segmentation and scaling, classification and recognition, and automatic disease detection and classification. Tomato samples have been collected from local market and data acquisition has been performed for data base preparation and various processing steps. Developed system can detect as well as classify the various diseases in tomato samples. Various pattern recognition and soft computing techniques have been implemented for data analysis as well as different parameters prediction like shelf life of the tomato, quality index based on disease detection and classification, freshness detection, maturity index detection, and different suggestions for detected diseases. Results are validated with aroma sensing technique using commercial Alpha Mos 3000 system. Accuracy has been calculated from extracted results, which is around 92%. 1. Introduction The increased awareness and sophistication of consumers have created the expectation for improved quality in consumer food products. This has increased the need of advance quality monitoring systems for quality detection and early warning for different type food samples. Quality itself is defined as the sum of all those attributes which can lead to the production of products acceptable to the consumer when they are combined. The basic quality assessment is often subjective with large number of attributes such as appearance, smell, texture, and flavor, frequently examined by the consumers [1]. Tomato is one of the most consuming fruit samples after potatoes. Tomato is also easily available and cheap fruit for analysis purpose. Tomato is also included in the very major horticulture commodities [2]. Sometimes its demand increases at very high level in market due to low production or damage due to different disease

References

[1]  T. Brosnan and D. W. Sun, “Improving quality inspection of food products by computer vision—a review,” Journal of Food Engineering, vol. 61, no. 1, pp. 3–16, 2004.
[2]  Z. B. Husin, A. Y. B. Md Shakaff, A. H. B. Abdul Aziz, and R. B. S. Mohamed Farook, “Feasibility study on plant chili disease detection using image processing techniques,” in Proceedings of the 3rd International Conference on Intelligent Systems Modelling and Simulation (ISMS '12), pp. 291–296, Kota Kinabalu, Malaysia, February 2012.
[3]  T. Brosnan and D.-W. Sun, “Improving quality inspection of food products by computer vision—a review,” Journal of Food Engineering, vol. 61, no. 1, pp. 3–16, 2004.
[4]  J. A. Kodagali and S. Balaji, “Computer vision and image analysis based techniques for automatic characterization of fruits—a review,” International Journal of Computer Applications, vol. 50, no. 6, 2012.
[5]  S. R. Dubey, Automatic recognition of fruits and vegetables and detection of fruit diseases [thesis], 2012.
[6]  H. N. Patel, R. K. Jain, and M. V. Joshi, “Fruit detection using improved multiple features based algorithm,” International Journal of Computer Applications, vol. 13, no. 2, pp. 1–5, 2011.
[7]  R. Pydipati, Evaluation of classifiers for automatic disease detection in citrus leaves using machine vision [M.S. thesis], University of Florida, 2004.
[8]  D. Unay, Multispectral image processing and pattern recognition techniques for quality inspection of apple fruits [Ph.D. of Philosophy in Applied Sciences], Polytechnique de Mons, 2006.
[9]  “Guide to Ripening Stages,” http://www.lagorio.com/assets/pdf/lagorio-tomato-guide.pdf.
[10]  S. Satyam, V. Saikrishna, and S. Shashikant, “Non-contact ultrasonic based stiffness evaluation system for tomatoes during shelf-life storage,” Journal of Nutrition & Food Sciences, vol. 4, no. 273, p. 2, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133