The need for adapting video stream delivery over heterogeneous and unreliable networks requires self-adaptive and error resilient coding. Network bandwidth fluctuations can be handled by means of a video coding scheme which adapts to the channel conditions. However, packet losses which are frequent in wireless networks can cause a mismatch during the reconstruction in the receiver end and result in an accumulation of errors which deteriorates the quality of the delivered video. A combination of multiple description coding in pixel domain and scalable video coding schemes which addresses both video adaptation and robustness to data loss is proposed in this paper. The proposed scheme combines error concealment with spatial video scalability. In order to improve the fidelity of the reconstructed to the original frames in presence of packet loss, a multilayer polyphase spatial decomposition algorithm is proposed. Classical multiple description methods interpolate the missing data which results in smoothing and artifact at object boundaries. The proposed algorithm addresses the quality degradation due to low-pass filtering effect of interpolation methods. We also comparatively analyze the trade-off between robustness to channel errors and coding efficiency. 1. Introduction Several error concealment methods have been proposed to deal with data loss in unreliable networks among which the most important methods are forward error correction [1], intra/intercoding mode selection [2], layered coding [3], and multiple description coding (MDC) [4]. MDC methods are developed for increasing the reliability of data transmission over unreliable networks. In MDC methods, video is decomposed into descriptions which are transmitted over a probably independent network channel [4]. This decomposition can be performed before applying any transform to the video data or after application of the transform and hence to the transform coefficients. The decomposition of data can be done in spatial resolution by assigning pixels to different descriptions [5–7], in temporal resolution by assigning frames to different descriptions [8], and in signal-to-noise ratio (SNR) by transmitting less accurate pixel values in each description [9]. This decomposition should be optimized by minimizing the reconstruction error when one or some of the descriptions are lost and also by minimizing the redundancy in the descriptions. The extreme case in the MDC methods is duplicating data and transmitting identical data at every description. In this case the reconstruction error in presence of a
References
[1]
A. Nafaa, T. Taleb, and L. Murphy, “Forward error correction strategies for media streaming over wireless networks,” IEEE Communications Magazine, vol. 46, no. 1, pp. 72–79, 2008.
[2]
R. Zhang, S. L. Regunathan, and K. Rose, “Video coding with optimal inter/intra-mode switching for packet loss resilience,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 966–976, 2000.
[3]
C.-M. Fu, W.-L. Hwang, and C.-L. Huang, “Efficient post-compression error-resilient 3D-scalable video transmission for packet erasure channels,” in Proceeding of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), vol. 2, pp. 305–308, March 2005.
[4]
Y. Wang, A. R. Reibman, and S. Lin, “Multiple description coding for video delivery,” Proceedings of the IEEE, vol. 93, no. 1, pp. 57–70, 2005.
[5]
R. Bernardini, M. Durigon, R. Rinaldo, L. Celetto, and A. Vitali, “Polyphase spatial subsampling multiple description coding of video streams with H264,” in Proceedings of the International Conference on Image Processing (ICIP '04), vol. 5, pp. 3213–3216, October 2004.
[6]
J. Jia and H. Kim, “Polyphase downsampling based multiple description coding applied to H.264 video coding,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E89-A, no. 6, pp. 1601–1606, 2006.
[7]
T. shanableh, S.-T. Hslang, and F. Ishtiaq, “Methods and apparatus for encoding and decoding video,” U.S. Patent Application no. 12/108,680, 2008.
[8]
S. Gao and H. Gharavi, “Multiple description video coding over multiple path routing networks,” in Proceedings of the International Conference on Digital Telecommunications (ICDT '06), pp. 42–47, 2006.
[9]
O. Campana and R. Contiero, “An H.264/AVC video coder based on multiple description scalar quantizer,” in Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers (ACSSC '06), pp. 1049–1053, Pacific Grove, Calif, USA, October-November 2006.
[10]
R. Venkataramani, G. Kramer, and V. K. Goyal, “Multiple description coding with many channels,” IEEE Transactions on Information Theory, vol. 49, no. 9, pp. 2106–2114, 2003.
[11]
V. K. Goyal, “Multiple description coding: compression meets the network,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 74–93, 2001.
[12]
N. Franchi, M. Fumagalli, G. Gatti, and R. Lancini, “A novel error-resilience scheme for a 3-D multiple description video coder,” in Proceedings of the Picture Coding Symposium (PCS '04), pp. 373–376, December 2004.
[13]
W.-J. Tsai and J.-Y. Chen, “Joint temporal and spatial error concealment for multiple description video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 12, pp. 1822–1833, 2010.
[14]
T. Wiegand, G. J. Sullivan, G. Bj?ntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.
[15]
C.-S. Kim and S.-U. Lee, “Multiple description coding of motion fields for robust video transmission,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 9, pp. 999–1010, 2001.
[16]
V. K. Goyal and V. K. Goyal, “Theoretical foundations of transform coding,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 9–21, 2001.
[17]
S. Cen and P. C. Cosman, “Decision trees for error concealment in video decoding,” IEEE Transactions on Multimedia, vol. 5, no. 1, pp. 1–7, 2003.
[18]
Y. Wang, M. T. Orchard, and A. R. Reibman, “Multiple description image coding for noisy channels by pairing transform coefficients,” in Proceedings of the IEEE 1st Workshop on Multimedia Signal Processing, pp. 419–424, Princeton, NJ, USA, June 1997.
[19]
N. Memon and X. Wu, “Recent devolpements in context-based predictiv e techniques for lossless image compression,” Computer Journal, vol. 40, no. 2-3, pp. 127–136, 1997.