全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structure-Function Relationships behind the Phenomenon of Cognitive Resilience in Neurology: Insights for Neuroscience and Medicine

DOI: 10.1155/2014/462765

Full-Text   Cite this paper   Add to My Lib

Abstract:

The phenomenon of cognitive resilience, that is, the dynamical preservation of normal functions despite neurological disorders, demonstrates that cognition can be highly robust to devastating brain injury. Here, cognitive resilience is considered across a range of neurological conditions. Simple computational models of structure-function relationships are used to discuss hypotheses about the neural mechanisms of resilience. Resilience expresses functional redundancies in brain networks and suggests a process of dynamic rerouting of brain signals. This process is underlined by a global renormalization of effective connectivity, capable of restoring information transfer between spared brain structures via alternate pathways. Local mechanisms of synaptic plasticity mediate the renormalization at the lowest level of implementation, but it is also driven by top-down cognition, with a key role of self-awareness in fostering resilience. The presence of abstraction layers in brain computation and networking is hypothesized to account for the renormalization process. Future research directions and challenges are discussed regarding the understanding and control of resilience based on multimodal neuroimaging and computational neuroscience. The study of resilience will illuminate ways by which the brain can overcome adversity and help inform prevention and treatment strategies. It is relevant to combating the negative neuropsychological impact of aging and fostering cognitive enhancement. 1. Introduction In neurology, one is often faced with a relative disconnect between the clinical presentation and the underlying neuropathology or amount of brain damage [1–10]. One observes cognitive functions that appear to be relatively preserved in spite of damage to brain systems that one would expect to be normally implicated in these functions. Patients with similar brain damage or neurological disorder often show quite different neuropsychological profiles, with different evolutions, and cliniconeuropathological relationships are characterized by a strong between-subject variability [2, 9]. Part of this between-subject variability is underlined by static intrinsic differences in structure-function relationships in different subjects, for example, the lateralization of language, which makes certain patients less susceptible than others to certain impairments for similar brain damage, for example, damage to the left hemisphere, in which many critical functions for language are most often implemented in humans. Part of the variability is related to processes of recovery that

References

[1]  A. Luria, The Man with a Shattered World: The History of a Brain Wound, Harvard University Press, Cambridge, Mass, USA, 1987.
[2]  U. Noppeney, K. J. Friston, and C. J. Price, “Degenerate neuronal systems sustaining cognitive functions,” Journal of Anatomy, vol. 205, no. 6, pp. 433–442, 2004.
[3]  C. L. Philippi, J. S. Feinstein, S. S. Khalsa et al., “Preserved self-awareness following extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal cortices,” PLoS ONE, vol. 7, no. 8, Article ID e38413, 2012.
[4]  S. Laureys, M. Boly, and P. Maquet, “Tracking the recovery of consciousness from coma,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1823–1825, 2006.
[5]  A. M. Owen, M. R. Coleman, M. Boly, M. H. Davis, S. Laureys, and J. D. Pickard, “Detecting awareness in the vegetative state,” Science, vol. 313, no. 5792, p. 1402, 2006.
[6]  M. M. Monti, A. Vanhaudenhuyse, M. R. Coleman et al., “Willful modulation of brain activity in disorders of consciousness,” The New England Journal of Medicine, vol. 362, no. 7, pp. 579–589, 2010.
[7]  O. Sacks, Awakenings, Pelican Books, Harmondsworth, UK, 1976.
[8]  Y. Stern, “Cognitive reserve,” Neuropsychologia, vol. 47, no. 10, pp. 2015–2028, 2009.
[9]  B. Dubois, H. H. Feldman, C. Jacova et al., “Revising the definition of Alzheimer’s disease: a new lexicon,” The Lancet Neurology, vol. 9, no. 11, pp. 1118–1127, 2010.
[10]  M. F. de Oliveira, F. C. G. Pinto, K. Nishikuni, R. V. Botelho, A. M. Lima, and J. M. Rotta, “Revisiting hydrocephalus as a model to study brain resilience,” Frontiers in Human Neuroscience, vol. 5, article 181, 2012.
[11]  Y. Stern, “Cognitive reserve and Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 20, no. 2, pp. 112–117, 2006.
[12]  K. Williford, D. Rudrauf, and C. L. Philippi, “Self-consciousness,” in Encyclopedia of the Mind, Sage, Thousand Oaks, Calif, USA, 2011.
[13]  S. S. Khalsa, D. Rudrauf, J. S. Feinstein, and D. Tranel, “The pathways of interoceptive awareness,” Nature Neuroscience, vol. 12, no. 12, pp. 1494–1496, 2009.
[14]  G. M. Edelman and J. A. Gally, “Degeneracy and complexity in biological systems,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13763–13768, 2001.
[15]  R. G. Lee and P. van Donkelaar, “Mechanisms underlying functional recovery following stroke,” Canadian Journal of Neurological Sciences, vol. 22, no. 4, pp. 257–263, 1995.
[16]  D. Rudrauf and A. Damasio, “A conjecture regarding the biological mechanism of subjectivity and feeling,” Journal of Consciousness Studies, vol. 12, no. 8–10, pp. 236–262, 2005.
[17]  S. Paradiso and D. Rudrauf, “Struggle for life, struggle for love and recognition: the neglected self in social cognitive neuroscience,” Dialogues in Clinical Neuroscience, vol. 14, no. 1, pp. 65–75, 2012.
[18]  W. Penfield, “Neurophysiological basis of the higher functions of the nervous system,” in Handbook of Physiology; A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts, L. S. Jefferson, A. D. Cherrington, and H. M. Goodman, Eds., vol. 6, p. 1254, Oxford University Press, New York, NY, USA, 1960.
[19]  A. Damasio, The Feeling of What Happens: Body and Emotion in the Making of Consciousness, Harvest Books, 1999.
[20]  L. Feuillet, H. Dufour, and J. Pelletier, “Brain of a white-collar worker,” The Lancet, vol. 370, no. 9583, p. 262, 2007.
[21]  H. Damasio and A. Damasio, Lesion Analysis in Neuropsychology, Oxford University Press, New York, NY, USA, 1989.
[22]  D. Rudrauf, S. Mehta, J. Bruss, D. Tranel, H. Damasio, and T. J. Grabowski, “Thresholding lesion overlap difference maps: application to category-related naming and recognition deficits,” NeuroImage, vol. 41, no. 3, pp. 970–984, 2008.
[23]  D. Rudrauf, S. Mehta, and T. J. Grabowski, “Disconnection’s renaissance takes shape: formal incorporation in group-level lesion studies,” Cortex, vol. 44, no. 8, pp. 1084–1096, 2008.
[24]  M. C. Cirstea and M. F. Levin, “Compensatory strategies for reaching in stroke,” Brain, vol. 123, part 5, pp. 940–953, 2000.
[25]  A. R. Damasio, Descartes’ Error: Emotion, Reason and the Human Brain, Grosset/Putnam, New York, NY, USA, 1994.
[26]  M. Catani and D. H. Ffytche, “The rises and falls of disconnection syndromes,” Brain, vol. 128, no. 10, pp. 2224–2239, 2005.
[27]  A. D. Craig, “Human feelings: why are some more aware than others?” Trends in Cognitive Sciences, vol. 8, no. 6, pp. 239–241, 2004.
[28]  A. D. Craig, “How do you feel—now? The anterior insula and human awareness,” Nature Reviews Neuroscience, vol. 10, no. 1, pp. 59–70, 2009.
[29]  R. Z. Goldstein, A. D. Craig, A. Bechara et al., “The neurocircuitry of impaired insight in drug addiction,” Trends in Cognitive Sciences, vol. 13, no. 9, pp. 372–380, 2009.
[30]  T. Singer, H. D. Critchley, and K. Preuschoff, “A common role of insula in feelings, empathy and uncertainty,” Trends in Cognitive Sciences, vol. 13, no. 8, pp. 334–340, 2009.
[31]  D. A. Gusnard, E. Akbudak, G. L. Shulman, and M. E. Raichle, “Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4259–4264, 2001.
[32]  A. W. M. Kelley, C. N. Macrae, C. L. Wyland, S. Caglar, S. Inati, and T. F. Heatherton, “Finding the self? An event-related fMRI study,” Journal of Cognitive Neuroscience, vol. 14, no. 5, pp. 785–794, 2002.
[33]  D. M. Amodio and C. D. Frith, “Meeting of minds: the medial frontal cortex and social cognition,” Nature Reviews Neuroscience, vol. 7, no. 4, pp. 268–277, 2006.
[34]  C. L. Philippi, M. C. Duff, N. L. Denburg, D. Tranel, and D. Rudrauf, “Medial PFC damage abolishes the self-reference effect,” Journal of Cognitive Neuroscience, vol. 24, no. 2, pp. 475–481, 2012.
[35]  J. S. Feinstein, D. Rudrauf, S. S. Khalsa et al., “Bilateral limbic system destruction in man,” Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 1, pp. 88–106, 2010.
[36]  R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “The brain’s default network: anatomy, function, and relevance to disease,” Annals of the New York Academy of Sciences, vol. 1124, pp. 1–38, 2008.
[37]  A. Damasio, Self Comes to Mind, Constructing the Conscious Brain, Random House, 2011.
[38]  A. Damasio, H. Damasio, and D. Tranel, “Persistence of feelings and sentience after bilateral damage of the insula,” Cerebral Cortex, vol. 23, no. 4, pp. 833–846, 2013.
[39]  J. S. Feinstein, “Lesion studies of human emotion and feeling,” Current Opinion in Neurobiology, vol. 23, no. 3, pp. 304–309, 2013.
[40]  J. S. Feinstein, C. Buzza, R. Hurlemann et al., “Fear and panic in humans with bilateral amygdala damage,” Nature Neuroscience, vol. 16, no. 3, pp. 270–272, 2013.
[41]  B. A. Wilson, M. Kopelman, and N. Kapur, “Prominent and persistent loss of past awareness in amnesia: delusion, impaired consciousness or coping strategy?” Neuropsychological Rehabilitation, vol. 18, no. 5-6, pp. 527–540, 2008.
[42]  S. Laureys, J. T. Giacino, N. D. Schiff, M. Schabus, and A. M. Owen, “How should functional imaging of patients with disorders of consciousness contribute to their clinical rehabilitation needs?” Current Opinion in Neurology, vol. 19, no. 6, pp. 520–527, 2006.
[43]  S. Laureys and G. Tononi, The Neurology of Consciousness, Academic Press, London, UK, 2009.
[44]  A. Owen, N. Schiff, and S. Laureys, “The assessment of conscious awareness in the vegetative state,” in The Neurology of Consciousness, S. Laureys and G. Tononi, Eds., pp. 163–172, Academic Press, London, UK, 2009.
[45]  M. Boly, L. Tshibanda, A. Vanhaudenhuyse et al., “Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient,” Human Brain Mapping, vol. 30, no. 8, pp. 2393–2400, 2009.
[46]  A. Vanhaudenhuyse, Q. Noirhomme, L. J.-F. Tshibanda et al., “Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients,” Brain, vol. 133, no. 1, pp. 161–171, 2010.
[47]  J. Giacino and N. Schiff, “The minimally conscious state: clinical features, pathophysiology and therapeutic implications,” in The Neurology of Consciousness, S. Laureys and G. Tononi, Eds., pp. 173–190, Academic Press, London, UK, 2009.
[48]  J. T. Giacino and K. Kalmar, “The vegetative and minimally conscious states: a comparison of clinical features and functional outcome,” Journal of Head Trauma Rehabilitation, vol. 12, no. 4, pp. 36–51, 1997.
[49]  B. T. Hyman, H. Damasio, A. R. Damasio, and G. W. van Hoesen, “Alzheimer’s disease,” Annual Review of Public Health, vol. 10, pp. 115–140, 1989.
[50]  C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010.
[51]  J. Babinski, “Anosognosia,” The Journal of Nervous and Mental Disease, vol. 51, article 70, 1920.
[52]  S. Banks and S. Weintraub, “Self-awareness and self-monitoring of cognitive and behavioral deficits in behavioral variant frontotemporal dementia, primary progressive aphasia and probable Alzheimer’s disease,” Brain and Cognition, vol. 67, no. 1, pp. 58–68, 2008.
[53]  S. E. Starkstein, R. Jorge, R. Mizrahi, J. Adrian, and R. G. Robinson, “Insight and danger in Alzheimer’s disease,” European Journal of Neurology, vol. 14, no. 4, pp. 455–460, 2007.
[54]  S. E. Starkstein, S. Brockman, D. Bruce, and G. Petracca, “Anosognosia is a significant predictor of apathy in Alzheimer’s disease,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 22, no. 4, pp. 378–383, 2010.
[55]  G. Spalletta, P. Girardi, C. Caltagirone, and M. D. Orfei, “Anosognosia and neuropsychiatric symptoms and disorders in mild alzheimer disease and mild cognitive impairment,” Journal of Alzheimer’s Disease, vol. 29, no. 4, pp. 761–772, 2012.
[56]  M. J. Al-Aloucy, R. Cotteret, P. Thomas, M. Volteau, I. Benmaou, and G. Dalla Barba, “Unawareness of memory impairment and behavioral abnormalities in patients with Alzheimer’s disease: relation to professional health care burden,” Journal of Nutrition, Health and Aging, vol. 15, no. 5, pp. 356–360, 2011.
[57]  M. W. Weiner, D. P. Veitch, P. S. Aisen et al., “The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception,” Alzheimer’s and Dementia, vol. 8, supplement 1, pp. S1–S68, 2012.
[58]  S. E. Arnold, B. T. Hyman, J. Flory, A. R. Damasio, and G. W. van Hoesen, “The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with alzheimer’s disease,” Cerebral Cortex, vol. 1, no. 1, pp. 103–116, 1991.
[59]  M.-C. de Lacoste and C. L. White III, “The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system,” Neurobiology of Aging, vol. 14, no. 1, pp. 1–16, 1993.
[60]  S. M. Landau, D. Harvey, C. M. Madison et al., “Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI,” Neurobiology of Aging, vol. 32, no. 7, pp. 1207–1218, 2011.
[61]  J. Parvizi, G. W. van Hoesen, and A. Damasio, “Severe pathological changes of parabrachial nucleus in Alzheimer’s disease,” NeuroReport, vol. 9, no. 18, pp. 4151–154, 1998.
[62]  J. Parvizi, G. W. van Hoesen, and A. Damasio, “Selective pathological changes of the periaqueductal gray matter in Alzheimer’s disease,” Annals of Neurology, vol. 48, no. 3, pp. 344–353, 2000.
[63]  X. Delbeuck, M. van der Linden, and F. Collette, “Alzheimer’s disease as a disconnection syndrome?” Neuropsychology Review, vol. 13, no. 2, pp. 79–92, 2003.
[64]  X. Delbeuck, F. Collette, and M. van der Linden, “Is Alzheimer’s disease a disconnection syndrome?. Evidence from a crossmodal audio-visual illusory experiment,” Neuropsychologia, vol. 45, no. 14, pp. 3315–3323, 2007.
[65]  Y. He, Z. Chen, G. Gong, and A. Evans, “Neuronal networks in Alzheimer’s disease,” Neuroscientist, vol. 15, no. 4, pp. 333–350, 2009.
[66]  M. Filippi and F. Agosta, “Structural and functional network connectivity breakdown in Alzheimer’s disease studied with magnetic resonance imaging techniques,” Journal of Alzheimer’s Disease, vol. 24, no. 3, pp. 455–474, 2011.
[67]  T. Xie and Y. He, “Mapping the Alzheimer’s brain with connectomics,” Frontiers in Psychiatry, vol. 2, article 77, 2012.
[68]  S. Neufang, A. Akhrif, V. Riedl, et al., “Disconnection of frontal and parietal areas contributes to impaired attention in very early Alzheimer's disease,” Journal of Alzheimer's, vol. 25, no. 2, pp. 309–321, 2011.
[69]  M. Pievani, F. Agosta, E. Pagani et al., “Assessment of white matter tract damage in mild cognitive impairment and Alzheimer’s disease,” Human Brain Mapping, vol. 31, no. 12, pp. 1862–1875, 2010.
[70]  J. L. Price and J. C. Morris, “Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease,” Annals of Neurology, vol. 45, no. 3, pp. 358–368, 1999.
[71]  Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS), “Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales,” The Lancet, vol. 357, no. 9251, pp. 169–175, 2001.
[72]  J. Steffener and Y. Stern, “Exploring the neural basis of cognitive reserve in aging,” Biochimica et Biophysica Acta: Molecular Basis of Disease, vol. 1822, no. 3, pp. 467–473, 2012.
[73]  Y. Stern, B. Gurland, T. K. Tatemichi, M. X. Tang, D. Wilder, and R. Mayeux, “Influence of education and occupation on the incidence of Alzheimer’s disease,” Journal of the American Medical Association, vol. 271, no. 13, pp. 1004–1010, 1994.
[74]  M. J. Valenzuela and P. Sachdev, “Brain reserve and dementia: a systematic review,” Psychological Medicine, vol. 36, no. 4, pp. 441–454, 2006.
[75]  H. Braak and E. Braak, “Neuropathological stageing of Alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991.
[76]  C. M. Roe, M. A. Mintun, G. D’Angelo, C. Xiong, E. A. Grant, and J. C. Morris, “Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled pittsburgh compound B uptake,” Archives of Neurology, vol. 65, no. 11, pp. 1467–1471, 2008.
[77]  D. A. Bennett, R. S. Wilson, J. A. Schneider et al., “Education modifies the relation of AD pathology to level of cognitive function in older persons,” Neurology, vol. 60, no. 12, pp. 1909–1915, 2003.
[78]  M. B. Spitznagel and G. Tremont, “Cognitive reserve and anosognosia in questionable and mild dementia,” Archives of Clinical Neuropsychology, vol. 20, no. 4, pp. 505–515, 2005.
[79]  J. Gl?scher, D. Rudrauf, R. Colom et al., “Distributed neural system for general intelligence revealed by lesion mapping,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 10, pp. 4705–4709, 2010.
[80]  R. Chen, L. G. Cohen, and M. Hallett, “Nervous system reorganization following injury,” Neuroscience, vol. 111, no. 4, pp. 761–773, 2002.
[81]  G. Marrelec, A. Krainik, H. Duffau et al., “Partial correlation for functional brain interactivity investigation in functional MRI,” NeuroImage, vol. 32, no. 1, pp. 228–237, 2006.
[82]  A. R. Carter, S. V. Astafiev, C. E. Lang et al., “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Annals of Neurology, vol. 67, no. 3, pp. 365–375, 2010.
[83]  E. M. Nomura, C. Gratton, R. M. Visser, A. Kayser, F. Perez, and M. D’Esposito, “Double dissociation of two cognitive control networks in patients with focal brain lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 26, pp. 12017–12022, 2010.
[84]  M. Boly, V. Perlbarg, G. Marrelec et al., “Hierarchical clustering of brain activity during human nonrapid eye movement sleep,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 15, pp. 5856–5861, 2012.
[85]  M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9673–9678, 2005.
[86]  M. Boly, C. Phillips, E. Balteau et al., “Consciousness and cerebral baseline activity fluctuations,” Human Brain Mapping, vol. 29, no. 7, pp. 868–874, 2008.
[87]  F. Cauda, B. M. Micon, K. Sacco et al., “Disrupted intrinsic functional connectivity in the vegetative state,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 4, pp. 429–431, 2009.
[88]  W. W. Seeley, V. Menon, A. F. Schatzberg et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356, 2007.
[89]  V. L. Morgan, A. Mishra, A. T. Newton, J. C. Gore, and Z. Ding, “Integrating functional and diffusion magnetic resonance imaging for analysis of structure-function relationship in the human language network,” PLoS ONE, vol. 4, no. 8, Article ID e6660, 2009.
[90]  G. Lohmann, S. Hoehl, J. Brauer et al., “Setting the frame: the human brain activates a basic low-frequency network for language processing,” Cerebral Cortex, vol. 20, no. 6, pp. 1286–1292, 2010.
[91]  D. Zhang and M. E. Raichle, “Disease and the brain’s dark energy,” Nature Reviews Neurology, vol. 6, no. 1, pp. 15–28, 2010.
[92]  F. Agosta, M. Pievani, C. Geroldi, M. Copetti, G. B. Frisoni, and M. Filippi, “Resting state fMRI in Alzheimer’s disease: beyond the default mode network,” Neurobiology of Aging, vol. 33, no. 8, pp. 1564–1578, 2012.
[93]  C. J. Stam, W. de Haan, A. Daffertshofer et al., “Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease,” Brain, vol. 132, no. 1, pp. 213–224, 2009.
[94]  H.-Y. Zhang, S.-J. Wang, B. Liu et al., “Resting brain connectivity: changes during the progress of Alzheimer disease,” Radiology, vol. 256, no. 2, pp. 598–606, 2010.
[95]  C. Sorg, V. Riedl, M. Mühlau et al., “Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18760–18765, 2007.
[96]  T. Nakamura, F. G. Hillary, and B. B. Biswal, “Resting network plasticity following brain injury,” PLoS ONE, vol. 4, no. 12, Article ID e8220, 2009.
[97]  D. J. Sharp, C. F. Beckmann, R. Greenwood et al., “Default mode network functional and structural connectivity after traumatic brain injury,” Brain, vol. 134, no. 8, pp. 2233–2247, 2011.
[98]  R. L. Buckner, J. Sepulcre, T. Talukdar et al., “Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease,” Journal of Neuroscience, vol. 29, no. 6, pp. 1860–1873, 2009.
[99]  J. S. Damoiseaux, C. F. Beckmann, E. J. S. Arigita et al., “Reduced resting-state brain activity in the “default network” in normal aging,” Cerebral Cortex, vol. 18, no. 8, pp. 1856–1864, 2008.
[100]  M. Ystad, E. Hodneland, S. Adolfsdottir et al., “Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study,” NeuroImage, vol. 55, no. 1, pp. 24–31, 2011.
[101]  C. J. Honey, J.-P. Thivierge, and O. Sporns, “Can structure predict function in the human brain?” NeuroImage, vol. 52, no. 3, pp. 766–776, 2010.
[102]  A. Messé, D. Rudrauf, H. Benali, and G. Marrelec, “Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities,” PLoS Computational Biology, vol. 10, no. 3, Article ID e1003530, 2014.
[103]  J. S. Damoiseaux and M. D. Greicius, “Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity,” Brain Structure & Function, vol. 213, no. 6, pp. 525–533, 2009.
[104]  L. Q. Uddin, E. Mooshagian, E. Zaidel et al., “Residual functional connectivity in the split-brain revealed with resting-state functional MRI,” NeuroReport, vol. 19, no. 7, pp. 703–709, 2008.
[105]  J. Michael Tyszka, D. P. Kennedy, R. Adolphs, and L. K. Paul, “Intact bilateral resting-state networks in the absence of the corpus callosum,” Journal of Neuroscience, vol. 31, no. 42, pp. 15154–15162, 2011.
[106]  M. J. Lowe, B. J. Mock, and J. A. Sorenson, “Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations,” NeuroImage, vol. 7, no. 2, pp. 119–132, 1998.
[107]  J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof et al., “Consistent resting-state networks across healthy subjects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13848–13853, 2006.
[108]  Y. Nir, U. Hasson, I. Levy, Y. Yeshurun, and R. Malach, “Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation,” NeuroImage, vol. 30, no. 4, pp. 1313–1324, 2006.
[109]  S. Chen, T. J. Ross, W. Zhan et al., “Group independent component analysis reveals consistent resting-state networks across multiple sessions,” Brain Research, vol. 1239, pp. 141–151, 2008.
[110]  B. J. He, A. Z. Snyder, J. L. Vincent, A. Epstein, G. L. Shulman, and M. Corbetta, “Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect,” Neuron, vol. 53, no. 6, pp. 905–918, 2007.
[111]  A. del Cul, S. Dehaene, P. Reyes, E. Bravo, and A. Slachevsky, “Causal role of prefrontal cortex in the threshold for access to consciousness,” Brain, vol. 132, no. 9, pp. 2531–2540, 2009.
[112]  J. Wang, X. Zuo, and Y. He, “Graph-based network analysis of resting-state functional MRI,” Frontiers in Systems Neuroscience, vol. 4, article 16, 2010.
[113]  F. Bartolomei, I. Bosma, M. Klein et al., “Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices,” Clinical Neurophysiology, vol. 117, no. 9, pp. 2039–2049, 2006.
[114]  F. Bartolomei, I. Bosma, M. Klein et al., “How do brain tumors alter functional connectivity? A magnetoencephalography study,” Annals of Neurology, vol. 59, no. 1, pp. 128–138, 2006.
[115]  S. C. Ponten, F. Bartolomei, and C. J. Stam, “Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures,” Clinical Neurophysiology, vol. 118, no. 4, pp. 918–927, 2007.
[116]  S. D. Roosendaal, M. M. Schoonheim, H. E. Hulst et al., “Resting state networks change in clinically isolated syndrome,” Brain, vol. 133, no. 6, pp. 1612–1621, 2010.
[117]  D. Rudrauf, A. Douiri, C. Kovach et al., “Frequency flows and the time-frequency dynamics of multivariate phase synchronization in brain signals,” NeuroImage, vol. 31, no. 1, pp. 209–227, 2006.
[118]  P. Comon and C. Jutten, Handbook of Blind Source Separation, Independent Component Analysis and Applications, Academic Press, Oxford, UK, 2010.
[119]  D. O. Hebb, “Distinctive features of learning in the higher animal,” in Brain Mechanisms and Learning, J. F. Delafresnaye, Ed., Oxford University Press, London, UK, 1961.
[120]  K. I. Diamantras and S. Y. Kung, Principal Component Neural Networks, John Wiley & Sons, New York, NY, USA, 1996.
[121]  A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, vol. 7, no. 6, pp. 1129–1159, 1995.
[122]  S. Mesmoudi, V. Perlbarg, D. Rudrauf, et al., “Resting state networks' corticotopy: the dual intertwined rings architecture,” PLoS ONE, vol. 8, no. 7, Article ID e67444, 2013.
[123]  T. Cover and J. Thomas, Elements of Information Theory, John Wiley & Sons, New York, NY, USA edition, 1991.
[124]  C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
[125]  O. Sporns, “The human connectome: a complex network,” Annals of the New York Academy of Sciences, vol. 1224, no. 1, pp. 109–125, 2011.
[126]  N. T. Markov, M. Ercsey-Ravasz, D. C. van Essen, K. Knoblauch, Z. Toroczkai, and H. Kennedy, “Cortical high-density counterstream architectures,” Science, vol. 342, no. 6158, Article ID 1238406, 2013.
[127]  G. Tononi, “An information integration theory of consciousness,” BMC Neuroscience, vol. 5, article 42, 2004.
[128]  V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, “Context-dependent computation by recurrent dynamics in prefrontal cortex,” Nature, vol. 503, no. 7474, pp. 78–84, 2013.
[129]  R. Cabeza, “Hemispheric asymmetry reduction in older adults: the HAROLD model,” Psychology and Aging, vol. 17, no. 1, pp. 85–100, 2002.
[130]  J. Domínguez-Borràs, J. L. Armony, A. Maravita, J. Driver, and P. Vuilleumier, “Partial recovery of visual extinction by pavlovian conditioning in a patient with hemispatial neglect,” Cortex, vol. 49, no. 3, pp. 891–898, 2013.
[131]  I. H. Robertson, “A noradrenergic theory of cognitive reserve: implications for Alzheimer’s disease,” Neurobiology of Aging, vol. 34, no. 1, pp. 298–308, 2013.
[132]  R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, Elsevier, 2nd edition, 2012.
[133]  G. J. Goodhill and H. G. Barrow, “The role of weight normalization in competitive learning,” Neural Computation, vol. 6, no. 2, pp. 255–269, 1994.
[134]  D. Neumann, Connectivity of the brain from magnetic resonance imaging [Ph.D. dissertation], California Institute of Technology, 2010, http://resolver.caltech.edu/CaltechTHESIS:04282010-153942989.
[135]  G. Tononi and C. Cirelli, “Sleep function and synaptic homeostasis,” Sleep Medicine Reviews, vol. 10, no. 1, pp. 49–62, 2006.
[136]  D. Rudrauf, A. Lutz, D. Cosmelli, J.-P. Lachaux, and M. Le Van Quyen, “From autopoiesis to neurophenomenology: Francisco Varela’s exploration of the biophysics of being,” Biological Research, vol. 36, no. 1, pp. 27–65, 2003.
[137]  S. Dehaene, M. Kerszberg, and J.-P. Changeux, “A neuronal model of a global workspace in effortful cognitive tasks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14529–14534, 1998.
[138]  F. Varela, J.-P. Lachaux, E. Rodriguez, and J. Martinerie, “The brainweb: phase synchronization and large-scale integration,” Nature Reviews Neuroscience, vol. 2, no. 4, pp. 229–239, 2001.
[139]  K. Friston, “The free-energy principle: a rough guide to the brain?” Trends in Cognitive Sciences, vol. 13, no. 7, pp. 293–301, 2009.
[140]  K. Friston, “The free-energy principle: a unified brain theory?” Nature Reviews Neuroscience, vol. 11, no. 2, pp. 127–138, 2010.
[141]  M. V. J. Veenman, Intellectual Ability and Metacognitive Skill: Determinants of Discovery Learning in Computerized Learning Environments, University of Amsterdam, 1993.
[142]  K. Williford, D. Rudrauf, and G. Landini, “The paradoxes of subjectivity and the projective structure of consciousness,” in Consciousness and Subjectivity, S. Miguens and G. Preyer, Eds., Ontos, Frankfurt, Germany, 2012.
[143]  D. A. Stanley and R. Adolphs, “Toward a neural basis for social behavior,” Neuron, vol. 80, no. 3, pp. 816–826, 2013.
[144]  J. K. O’Regan and A. No?, “A sensorimotor account of vision and visual consciousness,” Behavioral and Brain Sciences, vol. 24, no. 5, pp. 939–1031, 2001.
[145]  D. Rudrauf, A. Lutz, D. Cosmelli, J.-P. Lachaux, and M. Le Van Quyen, “From autopoiesis to neurophenomenology: Francisco Varela's exploration of the biophysics of being,” Biological Research, vol. 36, no. 1, pp. 27–65, 2003.
[146]  R. Goldberg, “Survey of virtual machine research,” IEEE Computer, vol. 7, no. 6, pp. 34–45, 1974.
[147]  D. C. Dennett, Consciousness Explained, Little, Brown and Company, Boston, Mass, USA, 1991.
[148]  T. J. Sejnowski, C. Koch, and P. S. Churchland, “Computational neuroscience,” Science, vol. 241, no. 4871, pp. 1299–1306, 1988.
[149]  P. S. Churchland and T. J. Sejnowski, The Computational Brain, MIT Press, Cambridge, Mass, USA, 1992.
[150]  J. von Neumann, First Draft of a Report on the EDVAC, United States Army Ordnance Department, University of Pennsylvania, 1945.
[151]  W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943.
[152]  Y. He, L. Wang, Y. Zang et al., “Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study,” NeuroImage, vol. 35, no. 2, pp. 488–500, 2007.
[153]  N. Villain, B. Desgranges, F. Viader et al., “Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease,” Journal of Neuroscience, vol. 28, no. 24, pp. 6174–6181, 2008.
[154]  L. A. Beckett, D. J. Harvey, A. Gamst et al., “The Alzheimer’s Disease Neuroimaging Initiative: annual change in biomarkers and clinical outcomes,” Alzheimer’s and Dementia, vol. 6, no. 3, pp. 257–264, 2010.
[155]  Y. Li, Y. Wang, G. Wu et al., “Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features,” Neurobiology of Aging, vol. 33, no. 2, pp. 427.e15–427.e30, 2012.
[156]  D. T. Jones, M. M. MacHulda, P. Vemuri et al., “Age-related changes in the default mode network are more advanced in Alzheimer disease,” Neurology, vol. 77, no. 16, pp. 1524–1531, 2011.
[157]  O. Lazarov, J. Robinson, Y.-P. Tang et al., “Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice,” Cell, vol. 120, no. 5, pp. 701–713, 2005.
[158]  S. M. Smith, P. T. Fox, K. L. Miller et al., “Correspondence of the brain’s functional architecture during activation and rest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13040–13045, 2009.
[159]  P. Goel, A. Kuceyeski, E. Locastro, and A. Raj, “Spatial patterns of genome-wide expression profiles reflect anatomic and fiber connectivity architecture of healthy human brain,” Human Brain Mapping, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133