全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CSF Biomarkers of Alzheimer’s Disease: Impact on Disease Concept, Diagnosis, and Clinical Trial Design

DOI: 10.1155/2014/302712

Full-Text   Cite this paper   Add to My Lib

Abstract:

Data from clinicopathologic and biomarker studies have converged to support the view of Alzheimer’s disease (AD) as a continuum, with pathology developing decades prior to the onset of cognitive symptoms which culminate as dementia at the end stage of the disease. This concept is impacting disease nomenclature, diagnostic criteria, prognostic potential, and clinical trial design. Revisions to diagnostic criteria to incorporate biomarker results have recently been proposed in order to increase the confidence of AD as the underlying etiology of a clinical impairment and to permit a diagnosis of AD across the disease continuum, eventually perhaps in the asymptomatic period. Individuals in this preclinical stage are receiving intense focus as a targeted population for secondary prevention trials aimed at identifying disease-modifying therapies that have the best chance of preserving normal cognitive function. The goal is to bring validated biomarkers to clinical practice for the purpose of disease diagnosis, prognosis, and evaluation of therapeutic efficacy once disease-modifying treatments become available. Realization of this goal requires worldwide biomarker standardization efforts, consensus among researchers and clinicians regarding the clinical utility of assessing biomarkers in patient care settings, and eventually the endorsement and adoption of such procedures and practices into global health care systems. 1. The Crisis of AD Alzheimer’s disease (AD) is the most common cause of dementia, accounting for up to 70% of all dementia cases, and is now estimated to be the third leading cause of death, after heart disease and cancer [1]. Since advanced age is the strongest risk factor for AD, increased life expectancy and the aging of the “baby boomer” generation are leading to dramatic increases in AD incidence. AD currently affects 5.2 million people in the United States (US), with projected estimates reaching 13.8 million (115 million world-wide) by the year 2050 (http://www.alz.org/documents/national/world_alzheimer_report_2010.pdf). The lifetime risk for AD dementia for a 65-year-old person is currently estimated to be ~10.5%, with prevalence doubling every 5 years after age 65, reaching nearly 50% by age 80. In the US alone, the costs for care associated with AD in 2013 were more than $200 billion, with projected annual costs surpassing $1 trillion by the year 2050 (http://www.alz.org/alzheimers_disease_facts_and_figures.asp#cost). At present there are no effective treatments that will prevent the disease, halt its progression, or delay its onset.

References

[1]  B. D. James, S. E. Leurgans, L. E. Hebert, et al., “Contribution of Alzheimer disease to mortality in the United States,” Neurology, vol. 82, pp. 1045–1050, 2014.
[2]  S. S. Mirra, A. Heyman, D. McKeel et al., “The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease,” Neurology, vol. 41, no. 4, pp. 479–486, 1991.
[3]  Z. S. Khachaturian, “Diagnosis of Alzheimer's disease,” Archives of Neurology, vol. 42, no. 11, pp. 1097–1105, 1985.
[4]  B. T. Hyman and J. Q. Trojanowski, “Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease,” Journal of neuropathology and experimental neurology, vol. 56, no. 10, pp. 1095–1097, 1997.
[5]  T. J. Montine, C. H. Phelps, T. G. Beach et al., “National institute on aging-Alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach,” Acta Neuropathologica, vol. 123, no. 1, pp. 1–11, 2012.
[6]  D. M. Holtzman, J. C. Morris, and A. M. Goate, “Alzheimer's disease: the challenge of the second century,” Science Translational Medicine, vol. 3, no. 77, Article ID 77sr1, 2011.
[7]  G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984.
[8]  T. G. Beach, S. E. Monsell, L. E. Phillips, and W. Kukull, “Accuracy of the clinical diagnosis of Alzheimer disease at national institute on aging Alzheimer disease centers, 2005–2010,” Journal of Neuropathology and Experimental Neurology, vol. 71, no. 4, pp. 266–273, 2012.
[9]  R. Handels, P. Aalten, C. A. Wolfs, et al., “Diagnostic and economic evaluation of new biomarkers for Alzheimers disease: the research protocol of a prospective cohort study,” BMC Neurology, vol. 12, p. 72, 2012.
[10]  J. L. Cummings and D. V. Jeste, “Alzheimer's disease and its management in the year 2010,” Psychiatric Services, vol. 50, no. 9, pp. 1173–1177, 1999.
[11]  C. S. Teel, “Rural practitioners' experiences in dementia diagnosis and treatment,” Aging and Mental Health, vol. 8, no. 5, pp. 422–429, 2004.
[12]  J. Hassenstab, J. Burns, and J. Morris, “Clinical and neuropsychological features of Alzheimer's disease,” in Neurobiology of Mental Illness, D. Charney and E. J. Nestler, Eds., pp. 791–804, Oxford University Press, Oxford, UK, 4th edition, 2013.
[13]  B. Dubois, H. H. Feldman, C. Jacova, et al., “Revising the definition of Alzheimer's disease: a new lexicon,” Lancet Neurology, vol. 9, no. 11, pp. 1118–1127, 2010.
[14]  G. M. McKhann, D. S. Knopman, H. Chertkow, et al., “The diagnosis of dementia due to Alzheimers disease: Recommendations from the National Institute on Aging and the Alzheimers Association Workgroup,” Alzheimer's & Dementia, vol. 7, pp. 263–269, 2011.
[15]  M. Albert, S. T. DeKosky, and D. Dickson, “The diagnosis of Mild Cognitive Impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging and Alzheimer’s Association Workgroup,” Alzheimer's & Dementia, vol. 7, no. 3, pp. 270–279, 2011.
[16]  R. A. Sperling, P. S. Aisen, L. A. Beckett et al., “Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's & Dementia, vol. 7, no. 3, pp. 280–292, 2011.
[17]  J. Morris, K. Blennow, L. Froelich, et al., “Harmonized diagnostic criteria for Alzheimer's disease: recommendations,” Journal of Internal Medicine, vol. 275, pp. 204–213, 2014.
[18]  K. Blennow, “Biomarkers in Alzheimer's disease drug development,” Nature Medicine, vol. 16, no. 11, pp. 1218–1222, 2010.
[19]  S. T. Vilming, H. Schrader, and I. Monstad, “The significance of age, sex, and cerebrospinal fluid pressure in post-lumbar-puncture headache,” Cephalalgia, vol. 9, no. 2, pp. 99–106, 1989.
[20]  S. V. Ahmed, C. Jayawarna, and E. Jude, “Post lumbar puncture headache: diagnosis and management,” Postgraduate Medical Journal, vol. 82, no. 973, pp. 713–716, 2006.
[21]  K. Blennow, A. Wallin, and O. H?ger, “Low frequency of post-lumbar puncture headache in demented patients,” Acta Neurologica Scandinavica, vol. 88, no. 3, pp. 221–223, 1993.
[22]  E. R. Peskind, R. Riekse, J. F. Quinn et al., “Safety and acceptability of the research lumbar puncture,” Alzheimer Disease and Associated Disorders, vol. 19, no. 4, pp. 220–225, 2005.
[23]  E. Peskind, A. Nordberg, T. Darreh-Shori, and H. Soininen, “Safety of lumbar puncture procedures in patients with Alzheimer's disease,” Current Alzheimer Research, vol. 6, no. 3, pp. 290–292, 2009.
[24]  D. Strozyk, K. Blennow, L. R. White, and L. J. Launer, “CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study,” Neurology, vol. 60, no. 4, pp. 652–656, 2003.
[25]  T. Tapiola, I. Alafuzoff, S. Herukka et al., “Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain,” Archives of Neurology, vol. 66, no. 3, pp. 382–389, 2009.
[26]  C. M. Clark, S. Xie, J. Chittams et al., “Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses?” Archives of Neurology, vol. 60, no. 12, pp. 1696–1702, 2003.
[27]  A. Fagan, M. A. Mintun, R. H. Mach, et al., “Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans,” Annals of Neurology, vol. 59, no. 3, pp. 512–519, 2006.
[28]  A. Forsberg, H. Engler, O. Almkvist et al., “PET imaging of amyloid deposition in patients with mild cognitive impairment,” Neurobiology of Aging, vol. 29, no. 10, pp. 1456–1465, 2008.
[29]  T. Grimmer, M. Riemenschneider, H. F?rstl et al., “Beta amyloid in Alzheimer's disease: Increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid,” Biological Psychiatry, vol. 65, no. 11, pp. 927–934, 2009.
[30]  N. Tolboom, W. M. van der Flier, M. Yaqub et al., “Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding,” Journal of Nuclear Medicine, vol. 50, no. 9, pp. 1464–1470, 2009.
[31]  W. J. Jagust, S. M. Landau, L. M. Shaw et al., “Relationships between biomarkers in aging and dementia,” Neurology, vol. 73, no. 15, pp. 1193–1199, 2009.
[32]  S. Hong, O. Quintero-Monzon, B. L. Ostaszewski et al., “Dynamic analysis of amyloid β-protein in behaving mice reveals opposing changes in isf versus parenchymal Aβ during age-related plaque formation,” Journal of Neuroscience, vol. 31, no. 44, pp. 15861–15869, 2011.
[33]  A. M. Fagan, M. A. Mintun, A. R. Shah et al., “Cerebrospinal fluid tau and ptau181 increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of Alzheimer's disease,” EMBO Molecular Medicine, vol. 1, no. 8-9, pp. 371–380, 2009.
[34]  D. Irwin, J. Trojanowski, and M. Grossman, “Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer's disease,” Frontiers in Aging Neuroscience, vol. 5, no. 6, 2013.
[35]  C. Yao, A. J. Williams, A. K. Ottens et al., “Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats,” Brain Injury, vol. 22, no. 10, pp. 723–732, 2008.
[36]  M. ?st, K. Nylén, L. Csajbok et al., “Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury,” Neurology, vol. 67, no. 9, pp. 1600–1604, 2006.
[37]  K. Blennow, “Cerebrospinal fluid protein biomarkers for Alzheimer's disease,” NeuroRx, vol. 1, no. 2, pp. 213–225, 2004.
[38]  M. Otto, J. Wiltfang, H. Tumani et al., “Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease,” Neuroscience Letters, vol. 225, no. 3, pp. 210–212, 1997.
[39]  M. B. Coulthart, G. H. Jansen, E. Olsen et al., “Diagnostic accuracy of cerebrospinal fluid protein markers for sporadic Creutzfeldt-Jakob disease in Canada: a 6-year prospective study,” BMC Neurology, vol. 11, article 133, 2011.
[40]  T. Skillb?ck, C. Rosén, F. Asztely, N. Mattsson, K. Blennow, and H. Zetterberg, “Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry,” JAMA Neurology, vol. 71, no. 4, pp. 476–483, 2014.
[41]  N. Kfoury, B. B. Holmes, H. Jiang, D. M. Holtzman, and M. I. Diamond, “Trans-cellular propagation of Tau aggregation by fibrillar species,” The Journal of Biological Chemistry, vol. 287, no. 23, pp. 19440–19451, 2012.
[42]  K. Yamada, J. R. Cirrito, F. R. Stewart et al., “In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice,” Journal of Neuroscience, vol. 31, no. 37, pp. 13110–13117, 2011.
[43]  K. Yamada, J. K. Holth, F. Liao, et al., “Neuronal activity regulates extracellular tau in vivo,” The Journal of Experimental Medicine, vol. 211, no. 3, pp. 387–393, 2014.
[44]  H. Hampel, K. Blennow, L. M. Shaw, Y. C. Hoessler, H. Zetterberg, and J. Q. Trojanowski, “Total and phosphorylated tau protein as biological markers of Alzheimer's disease,” Experimental Gerontology, vol. 45, no. 1, pp. 30–40, 2010.
[45]  K. Buerger, M. Ewers, T. Pirttil? et al., “CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease,” Brain, vol. 129, no. 11, pp. 3035–3041, 2006.
[46]  D. Chien, A. K. Szardenings, S. Bahri, et al., “Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808,” Journal of Alzheimer's Disease, vol. 38, no. 1, pp. 171–184, 2014.
[47]  A. M. Fagan and R. J. Perrin, “Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer's disease,” Biomarkers in Medicine, vol. 6, no. 4, pp. 455–476, 2012.
[48]  J. Lee, K. Blennow, N. Andreasen et al., “The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients,” Clinical Chemistry, vol. 54, no. 10, pp. 1617–1623, 2008.
[49]  R. Craig-Schapiro, R. J. Perrin, C. M. Roe, et al., “YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer's disease,” Biological Psychiatry, vol. 68, pp. 903–912, 2010.
[50]  R. Tarawneh, G. D'Angelo, E. MacY et al., “Visinin-like protein-1: diagnostic and prognostic biomarker in Alzheimer disease,” Annals of Neurology, vol. 70, no. 2, pp. 274–285, 2011.
[51]  R. J. Perrin, R. Craig-Schapiro, J. P. Malone et al., “Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease,” PLoS ONE, vol. 6, no. 1, Article ID e16032, 2011.
[52]  B. Olsson, J. Hertze, R. Lautner et al., “Microglial markers are elevated in the prodromal phase of Alzheimer's disease and vascular dementia,” Journal of Alzheimer's Disease, vol. 33, no. 1, pp. 45–53, 2013.
[53]  X. Luo, L. Hou, H. Shi et al., “CSF levels of the neuronal injury biomarker visinin-like protein-1 in alzheimer's disease and dementia with lewy bodies,” Journal of Neurochemistry, vol. 127, no. 5, pp. 681–690, 2013.
[54]  R. Tarawneh, J.-M. Lee, J. H. Ladenson, J. C. Morris, and D. M. Holtzman, “CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease,” Neurology, vol. 78, no. 10, pp. 709–719, 2012.
[55]  K. Blennow, H. Hampel, M. Weiner, and H. Zetterberg, “Cerebrospinal fluid and plasma biomarkers in Alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 3, pp. 131–144, 2010.
[56]  C. M. Hulette, K. A. Welsh-Bohmer, M. G. Murray, A. M. Saunders, D. C. Mash, and L. M. McIntyre, “Neuropathological and neurolasychological changes in “normal” aging: evidence for preclinical Alzheimer Disease in cognitively normal individuals,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 12, pp. 1168–1174, 1998.
[57]  J. L. Price and J. C. Morris, “Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease,” Annals of Neurology, vol. 45, pp. 358–368, 1999.
[58]  D. Galasko, L. Chang, R. Motter et al., “High cerebrospinal fluid tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer 's disease and relation to apolipoprotein E genotype,” Archives of Neurology, vol. 55, no. 7, pp. 937–945, 1998.
[59]  A. Maddalena, A. Papassotiropoulos, B. Müller-Tillmanns et al., “Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to β-amyloid peptide42,” Archives of Neurology, vol. 60, no. 9, pp. 1202–1206, 2003.
[60]  G. M. Halliday, J. L. Holton, T. Revesz, and D. W. Dickson, “Neuropathology underlying clinical variability in patients with synucleinopathies,” Acta Neuropathologica, vol. 122, no. 2, pp. 187–204, 2011.
[61]  N. S. M. Schoonenboom, F. E. Reesink, N. A. Verwey et al., “Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort,” Neurology, vol. 78, no. 1, pp. 47–54, 2012.
[62]  R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, pp. 303–308, 1999.
[63]  R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” Journal of Internal Medicine, vol. 256, no. 3, pp. 183–194, 2004.
[64]  M. Weiner, D. P. Veitch, P. S. Aisen, et al., “The Alzheimer's disease neuroimaging initiative: a review of papers published since its inception,” Alzheimer's & Dementia, vol. 9, no. 5, pp. e111–e194, 2013.
[65]  L. M. Shaw, H. Vanderstichele, M. Knapik-Czajka et al., “Cerebrospinal fluid biomarker signature in alzheimer's disease neuroimaging initiative subjects,” Annals of Neurology, vol. 65, no. 4, pp. 403–413, 2009.
[66]  C. C. Rowe, S. Ng, U. Ackermann et al., “Imaging β-amyloid burden in aging and dementia,” Neurology, vol. 68, no. 20, pp. 1718–1725, 2007.
[67]  N. Mattsson, H. Zetterberg, O. Hansson et al., “CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment,” Journal of the American Medical Association, vol. 302, no. 4, pp. 385–393, 2009.
[68]  P. J. Visser, F. Verhey, D. L. Knol et al., “Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study,” The Lancet Neurology, vol. 8, no. 7, pp. 619–627, 2009.
[69]  P. Buchhave, L. Minthon, H. Zetterberg, ?. K. Wallin, K. Blennow, and O. Hansson, “Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia,” Archives of General Psychiatry, vol. 69, no. 1, pp. 98–106, 2012.
[70]  B. J. Snider, A. M. Fagan, C. Roe et al., “Cerebrospinal fluid biomarkers and rate of cognitive decline in very mild dementia of the Alzheimer type,” Archives of Neurology, vol. 66, no. 5, pp. 638–645, 2009.
[71]  H. Braak and E. Braak, “Frequency of stages of Alzheimer-related lesions in different age categories,” Neurobiology of Aging, vol. 18, no. 4, pp. 351–357, 1997.
[72]  J. L. Price, D. W. McKeel Jr., V. D. Buckles et al., “Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease,” Neurobiology of Aging, vol. 30, no. 7, pp. 1026–1036, 2009.
[73]  S. Vos, C. Xiong, P. J. Visser et al., “Preclinical Alzheimer's disease and its outcome: a longitudinal cohort study,” The Lancet Neurology, vol. 12, no. 10, pp. 957–965, 2013.
[74]  C. R. Jack Jr., D. S. Knopman, S. D. Weigand et al., “An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease,” Annals of Neurology, vol. 71, no. 6, pp. 765–775, 2012.
[75]  I. Skoog, P. Davidsson, ó. Aevarsson, H. Vanderstichele, E. Vanmechelen, and K. Blennow, “Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds,” Dementia and Geriatric Cognitive Disorders, vol. 15, no. 3, pp. 169–176, 2003.
[76]  D. R. Gustafson, I. Skoog, L. Rosengren, H. Zetterberg, and K. Blennow, “Cerebrospinal fluid β-amyloid 1-42 concentration may predict cognitive decline in older women,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 461–464, 2007.
[77]  E. Stomrud, O. Hansson, K. Blennow, L. Minthon, and E. Londos, “Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly,” Dementia and Geriatric Cognitive Disorders, vol. 24, no. 2, pp. 118–124, 2007.
[78]  A. M. Fagan, C. M. Roe, C. Xiong, M. A. Mintun, J. C. Morris, and D. M. Holtzman, “Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults,” Archives of Neurology, vol. 64, no. 3, pp. 343–349, 2007.
[79]  G. Li, I. Sokal, J. F. Quinn, et al., “CSF tau/Aβ42 ratio for increased risk of mild cognitive impairment: a follow-up study,” Neurology, vol. 69, no. 7, pp. 631–639, 2007.
[80]  O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow, and L. Minthon, “Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study,” The Lancet Neurology, vol. 5, no. 3, pp. 228–234, 2006.
[81]  K. G. Mawuenyega, W. Sigurdson, V. Ovod et al., “Decreased clearance of CNS β-amyloid in Alzheimer's disease,” Science, vol. 330, no. 6012, p. 1774, 2010.
[82]  R. J. Bateman, P. S. Aisen, B. de Strooper et al., “Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease,” Alzheimer's Research and Therapy, vol. 2, no. 6, article 35, 2011.
[83]  M. Moonis, J. M. Swearer, M. P. E. Dayaw et al., “Familial Alzheimer disease: decreases in CSF Aβ42 levels precede cognitive decline,” Neurology, vol. 65, no. 2, pp. 323–325, 2005.
[84]  R. Bateman, C. Xiong, T. L. S. Benzinger, et al., “Clinical and biomarker changes in dominantly inherited Alzheimer's disease,” The New England Journal of Medicine, vol. 367, pp. 795–804, 2012.
[85]  A. Fagan, “Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer disease,” Science Translational Medicine, vol. 6, no. 226, p. 226ra30, 2014.
[86]  T. Tapiola, H. Soininen, and T. Pirttil?, “CSF tau and Aβ42 levels in patients with Down's syndrome,” Neurology, vol. 56, no. 7, pp. 979–980, 2001.
[87]  J. M. Ringman, S. G. Younkin, D. Pratico et al., “Biochemical markers in persons with preclinical familial Alzheimer disease,” Neurology, vol. 71, no. 2, pp. 85–92, 2008.
[88]  C. R. Jack, D. S. Knopman, W. J. Jagust et al., “Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers,” The Lancet Neurology, vol. 12, no. 2, pp. 207–216, 2013.
[89]  R. J. Perrin, A. M. Fagan, and D. M. Holtzman, “Multimodal techniques for diagnosis and prognosis of Alzheimer's disease,” Nature, vol. 461, no. 7266, pp. 916–922, 2009.
[90]  C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010.
[91]  R. S. Desikan, L. K. McEvoy, W. K. Thompson et al., “Amyloid-β—associated clinical decline occurs only in the presence of elevated P-tau.,” Archives of Neurology, vol. 69, no. 6, pp. 709–713, 2012.
[92]  M. I. Kester, A. E. Van Der Vlies, M. A. Blankenstein et al., “CSF biomarkers predict rate of cognitive decline in Alzheimer disease,” Neurology, vol. 73, no. 17, pp. 1353–1358, 2009.
[93]  I. A. van Rossum, S. J. B. Vos, L. Burns et al., “Injury markers predict time to dementia in subjects with MCI and amyloid pathology,” Neurology, vol. 79, no. 17, pp. 1809–1816, 2012.
[94]  K. Blennow, H. Zetterberg, L. Minthon et al., “Longitudinal stability of CSF biomarkers in Alzheimer's disease,” Neuroscience Letters, vol. 419, no. 1, pp. 18–22, 2007.
[95]  H. Zetterberg, M. Pedersen, K. Lind et al., “Intra-individual stability of CSF biomarkers for Alzheimer's disease over two years,” Journal of Alzheimer's Disease, vol. 12, no. 3, pp. 255–260, 2007.
[96]  L. A. Beckett, D. J. Harvey, A. Gamst et al., “The Alzheimer's Disease neuroimaging initiative: annual change in biomarkers and clinical outcomes,” Alzheimer's and Dementia, vol. 6, no. 3, pp. 257–264, 2010.
[97]  P. Vemuri, H. J. Wiste, S. D. Weigand et al., “Serial MRI and CSF biomarkers in normal aging, MCI, and AD,” Neurology, vol. 75, no. 2, pp. 143–151, 2010.
[98]  M. Kanai, E. Matsubara, K. Isoe, et al., “Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1-42(43) in Alzheimer's disease: a study in Japan,” Annals of Neurology, vol. 44, pp. 17–26, 1998.
[99]  T. Sunderland, B. Wolozin, D. Galasko et al., “Longitudinal stability of CSF tau levels in Alzheimer patients,” Biological Psychiatry, vol. 46, no. 6, pp. 750–755, 1999.
[100]  J. B. Toledo, S. X. Xie, J. Q. Trojanowski, and L. M. Shaw, “Longitudinal change in CSF Tau and Aβ biomarkers for up to 48 months in ADNI,” Acta Neuropathologica, vol. 126, pp. 659–670, 2013.
[101]  C. R. Jack, M. S. Albert, D. S. Knopman, et al., “Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's & Dementia, vol. 7, no. 3, pp. 257–262, 2011.
[102]  M. I. Kester, L. Boelaarts, F. H. Bouwman et al., “Diagnostic impact of CSF biomarkers in a local hospital memory clinic,” Dementia and Geriatric Cognitive Disorders, vol. 29, no. 6, pp. 491–497, 2010.
[103]  F. Mouton-Liger, D. Wallon, A. C. Troussière, et al., “Impact of cerebro-spinal fluid biomarkers of Alzheimer's disease in clinical practice: a multicentric study,” Journal of Neurology, vol. 261, no. 1, pp. 144–151, 2014.
[104]  A. Troussière, D. Wallon, F. Mouton-Liger, et al., “Who needs cerebrospinal biomarkers? A national survey in clinical practice,” Journal of Alzheimer's Disease, vol. 40, pp. 857–861, 2014.
[105]  D. S. Knopman, C. R. Jack Jr., H. J. Wiste et al., “Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease,” Neurology, vol. 78, no. 20, pp. 1576–1582, 2012.
[106]  J. C. Morris and D. J. Selkoe, “Recommendations for the incorporation of biomarkers into Alzheimer clinical trials: an overview,” Neurobiology of Aging, vol. 32, supplement 1, pp. S1–S3, 2011.
[107]  R. A. Sperling, C. R. Jack Jr., and P. S. Aisen, “Testing the right target and right drug at the right stage,” Science Translational Medicine, vol. 3, no. 111, Article ID 111cm33, 2011.
[108]  J. Langbaum, A. S. Fleisher, K. Chen, et al., “Ushering in the study and treatment of preclinical Alzheimer disease,” Nature Reviews Neurology, vol. 9, no. 7, pp. 371–381, 2013.
[109]  R. Sperling, D. M. Rentz, K. A. Johnson, et al., “The A4 study: stopping AD before symptoms begin?” Science Translational Medicine, vol. 6, no. 228, p. 228fs13, 2014.
[110]  E. M. Reiman, J. B. S. Langbaum, A. S. Fleisher et al., “Alzheimers prevention initiative: a plan to accelerate the evaluation of presymptomatic treatments,” Journal of Alzheimer's Disease, vol. 26, supplement 3, no. 3, pp. 321–329, 2011.
[111]  S. Mills, J. Mallmann, A. M. Santacruz, et al., “Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial,” Revue Neurologique, vol. 169, no. 10, pp. 737–743, 2013.
[112]  N. Mattsson, U. Andreasson, S. Persson, et al., “The Alzheimer's Association external quality control program for cerebrospinal fluid biomarkers,” Alzheimer's and Dementia, vol. 7, no. 4, pp. 386.e6–395.e6, 2011.
[113]  N. Mattsson, U. Andreasson, S. Persson et al., “CSF biomarker variability in the Alzheimer's association quality control program,” Alzheimer's and Dementia, vol. 9, no. 3, pp. 251–261, 2013.
[114]  H. M. Vanderstichele, L. Shaw, M. Vandijck et al., “Alzheimer disease biomarker testing in cerebrospinal fluid: a method to harmonize assay platforms in the absence of an absolute reference standard,” Clinical Chemistry, vol. 59, no. 4, pp. 710–712, 2013.
[115]  M. T. Fodero-Tavoletti, S. Furumoto, L. Taylor, et al., “Assessing THK523 selectivity for tau deposits in Alzheimer's disease and non Alzheimer's disease tauopathies,” Alzheimer's Research & Therapy, vol. 6, no. 1, p. 11, 2014.
[116]  P. Giannetti, M. Politis, P. Su, et al., “Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: an in vivo [(11)C](R)-PK11195-PET pilot study,” Neurobiology of Disease, vol. 65, pp. 203–210, 2014.
[117]  J. W. Bartlett, C. Frost, N. Mattsson et al., “Determining cut-points for Alzheimer's disease biomarkers: statistical issues, methods and challenges,” Biomarkers in Medicine, vol. 6, no. 4, pp. 391–400, 2012.
[118]  J. Luo and C. Xiong, “Youden index and associated cut-points for three ordinal diagnostic groups,” Communications in Statistics. Simulation and Computation, vol. 42, no. 6, pp. 1213–1234, 2013.
[119]  S. Vos, I. van Rossum, L. Burns et al., “Test sequence of CSF and MRI biomarkers for prediction of AD in subjects with MCI,” Neurobiology of Aging, vol. 33, no. 10, pp. 2272–2281, 2012.
[120]  C. Xiong, G. van Belle, K. Chen, et al., “Combining multiple markers to improve the longitudinal rate of progression—application to clinical trials on the early stage of Alzheimer's disease,” Statistics in Biopharmaceutical Research, vol. 5, no. 1, 2013.
[121]  C. Bazenet and S. Lovestone, “Plasma biomarkers for Alzheimers disease: much needed but tough to find,” Biomarkers in Medicine, vol. 6, no. 4, pp. 441–454, 2012.
[122]  D. Alcolea, P. Martínez-Lage, A. Izagirre, et al., “Feasibility of lumbar puncture in the study of cerebrospinal fluid biomarkers for Alzheimer's disease: a multicenter study in Spain,” Journal of Alzheimer's Disease, vol. 39, pp. 719–726, 2014.
[123]  H. Vanderstichele, M. Bibl, S. Engelborghs et al., “Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: a consensus paper from the Alzheimer's Biomarkers Standardization Initiative,” Alzheimer's and Dementia, vol. 8, no. 1, pp. 65–73, 2012.
[124]  J. Karlawish, “Addressing the ethical, policy, and social challenges of preclinical Alzheimer disease,” Neurology, vol. 77, no. 15, pp. 1487–1493, 2011.
[125]  S. Pearson, D. A. Ollendorf, J. A. Colby, et al., “Biomarker tests for the diagnosis of Alzheimer's disease: generating evidence to inform insurance coverage determinations,” Alzheimer's & Dementia, vol. 9, no. 7, pp. 745–752, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133