全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dual Wavelength Spectrophotometric Method for Simultaneous Estimation of Atorvastatin Calcium and Felodipine from Tablet Dosage Form

DOI: 10.1155/2014/131974

Full-Text   Cite this paper   Add to My Lib

Abstract:

Atorvastatin calcium (ATR) and felodipine (FEL) are beneficial in combination for elderly people in management of hypertension and atherosclerosis. Aim of present study is to develop simple, accurate, and precise method for simultaneous quantitative estimation of ATR and FEL from combined tablet dosage form. Method involves simultaneous equation, using acetonitrile—double distilled water (70?:?30)—common solvent showing absorption maxima at 245 and 268?nm. Calibration curves determination for both drugs has been carried out in 0.1?N HCl, phosphate buffer pH 6.8, and acetonitrile (ACN)—water (70?:?30?V/V). Linearity range was observed in the concentration range of 2 to 12?μg/mL for FEL and 20 to 100?μg/mL for ATR. Percent concentration estimated for ATR and FEL was 100.12 ± 1.03 and 99.98 ± 0.98, respectively. The method was found to be simple, economical, accurate and precise and can be used for quantitative estimation of ATR and FEL. 1. Introduction Atorvastatin (ATR) is chemically described as [R-( , )]-2-(4-fluorophenyl)-dihydroxy-5-(1-methylethyl)-3-phenyl-4-[(phenylamino) carbonyl]-1H-pyrrole-1-heptanoic acid (Figure 1). It is a member of the drug class known as statins, used for lowering blood cholesterol [1]. It also stabilizes plaque and prevents strokes through anti-inflammation and other mechanisms. It inhibits HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase, an enzyme found in liver tissue that plays a key role in production of cholesterol in the body. Inhibition of this enzyme stops the reduction of HMG-CoA to mevalonate, which is the rate-limiting step in hepatic cholesterol biosynthesis. Inhibition of the enzyme decreases cholesterol synthesis and ultimately increases expression of low-density lipoprotein receptors (LDL receptors) on hepatocytes [2, 3]. Figure 1: Structure of (I) atorvastatin, (II) felodipine. Felodipine (FEL) is a 1, 4 dihydropyridine derivative, that is, chemically described as ethyl methyl-1,4-dihydro-2,6-dimethyl-4-(2,3 dichlorophenyl)-3,5-pyridinedicarboxylate. It is a dihydropyridine calcium channel blocker used mainly for the management of hypertension and angina pectoris like the other calcium channel blockers [4]. Literature survey reveals that spectrophotometric and chromatographic methods, and a stability-indicating LC method, have been reported for determination of ATR in pharmaceutical preparations in combination with other drugs [5–13]. Several chromatographic and spectrophotometric methods have been reported for felodipine assay [14–18]. However, most of the analytical methods developed for the

References

[1]  B. W. McCrindle, L. Ose, and A. D. Marais, “Efficacy and safety of atorvastatin in children and adolescents with familial hypercholesterolemia or severe hyperlipidemia: a multicenter, randomized, placebo-controlled trial,” Journal of Pediatrics, vol. 143, no. 1, pp. 74–80, 2003.
[2]  J. Villa and R. E. Pratley, “Ezetimibe/simvastatin or atorvastatin for the treatment of hypercholesterolemia in patients with the metabolic syndrome: the VYMET study,” Current Diabetes Reports, vol. 10, no. 3, pp. 173–175, 2010.
[3]  T. McCormack, P. Harvey, R. Gaunt, V. Allgar, R. Chipperfield, and P. Robinson, “Incremental cholesterol reduction with ezetimibe/simvastatin, atorvastatin and rosuvastatin in UK General Practice (IN-PRACTICE): randomised controlled trial of achievement of Joint British Societies (JBS-2) cholesterol targets,” International Journal of Clinical Practice, vol. 64, no. 8, pp. 1052–1061, 2010.
[4]  M. B. El-Hawary, M. T. khayall, and Z. Isaak, Hand Book of Pharmacology, The Scientific Book Center, S.O.P. Press, Cairo, Egypt, 1978.
[5]  S. L. Thamake, S. D. Jadhav, and S. A. Pishawikar, “Development and validation of method for simultaneous estimation of atorvastatin calcium and ramipril from capsule dosage form by first order derivative spectroscopy,” Asian Journal of Research in Chemistry, vol. 2, no. 1, pp. 52–53, 2009.
[6]  R. Lakshmana, K. R. Rajeswari, and G. G. Sankar, “Spectrophotometric method for simultaneous estimation of atorvastatin and amlodipine in tablet dosage form,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 2, pp. 66–69, 2010.
[7]  M. Saravanamuthukumar, M. Palanivelu, K. Anandarajagopal, and D. Sridharan, “Simultaneous estimation and validation of atorvastatin calcium and ubidecarenone (Coenzyme Q10) in combined tablet dosage form by RP-HPLC method,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 2, pp. 36–38, 2010.
[8]  L. Joseph, M. George, and B. V. R. Rao, “Simultaneous estimation of atorvastatin and ramipril by RP-HPLC and spectroscopy,” Pakistan Journal of Pharmaceutical Sciences, vol. 21, no. 3, pp. 282–284, 2008.
[9]  L. Nováková, D. ?atínsky, and P. Solich, “HPLC methods for the determination of simvastatin and atorvastatin,” Trends in Analytical Chemistry, vol. 27, no. 4, pp. 352–367, 2008.
[10]  B. G. Chaudhari, N. M. Patel, and P. B. Shah, “Stability indicating RP-HPLC method for simultaneous determination of atorvastatin and amlodipine from their combination drug products,” Chemical and Pharmaceutical Bulletin, vol. 55, no. 2, pp. 241–246, 2007.
[11]  A. Mohammadi, N. Rezanour, M. Ansari Dogaheh, F. Ghorbani Bidkorbeh, M. Hashem, and R. B. Walker, “A stability-indicating high performance liquid chromatographic (HPLC) assay for the simultaneous determination of atorvastatin and amlodipine in commercial tablets,” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, vol. 846, no. 1-2, pp. 215–221, 2007.
[12]  G. F. Patel, N. R. Vekariya, and R. B. Dholakiya, “Estimation of aspirin and atorvastatin calcium in combine dosage form using derivative spectrophotometric method,” International Journal of Pharmaceutical Research, vol. 2, no. 1, pp. 62–66, 2010.
[13]  N. R. Jadhav, R. S. Kambar, and S. J. Nadaf, “RP-HPLC method for simultaneous estimation of atorvastatin calcium and felodipine from tablet dosage form,” Current Pharma Research, vol. 2, no. 4, pp. 637–642, 2012.
[14]  A. J. López, V. Martínez, R. M. Alonso, and R. M. Jiménez, “High-performance liquid chromatography with amperometric detection applied to the screening of 1,4-dihydropyridines in human plasma,” Journal of Chromatography, vol. 870, no. 1-2, pp. 105–114, 2010.
[15]  A. B. Baranda, R. M. Jiménez, and R. M. Alonso, “Simultaneous determination of five 1,4-dihydropyridines in pharmaceutical formulations by high-performance liquid chromatography-amperometric detection,” Journal of Chromatography A, vol. 1031, no. 1-2, pp. 275–280, 2004.
[16]  J. Gottfries, J. Ahlbom, V. Harang et al., “Validation of an extended release tablet dissolution testing system using design and multivariate analysis,” International Journal of Pharmaceutics, vol. 106, no. 2, pp. 141–148, 1994.
[17]  B. Marciniec, E. Jaroszkiewicz, and M. Ogrodowczyk, “The effect of ionizing radiation on some derivatives of 1,4-dihydropyridine in the solid state,” International Journal of Pharmaceutics, vol. 233, no. 1-2, pp. 207–215, 2002.
[18]  K. Basavaiah, U. Chandrashekar, and H. C. Prameela, “Sensitive spectrophotometric determination of amlodipine and felodipine using iron(III) and ferricyanide,” Farmaco II, vol. 58, no. 2, pp. 141–148, 2003.
[19]  K. Rajesh, R. Rajalakshmi, S. Vijayaraj, and T. Sreelakshmi, “Simultaneous estimation of atorvastatin calcium and felodipine by UV-spectrophotometric method in formulation,” Asian Journal of Research in Chemistry, vol. 4, no. 8, pp. 1202–1205, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133