全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Conformational Model for MTPA Esters of Chiral N-(2-Hydroxyalkyl)acrylamides

DOI: 10.1155/2014/736417

Full-Text   Cite this paper   Add to My Lib

Abstract:

The absolute stereochemistry of novel chiral N-(2-hydroxylalkyl)acrylamides prepared by a lipase-catalyzed resolution was successfully determined by 1H NMR of their MTPA esters. The method was validated for this particular case by computational experiments. 1. Introduction It is well known that chiral acrylamides are useful compounds in organic synthesis [1–3]. The absolute stereochemistry of chiral compounds is determined by using several methods [4]. Among the methods available, NMR spectroscopy using chiral derivatizing agents such as 2-methoxy-2-(trifluoromethyl)phenylacetic acid (MTPA) has been widely used in the determination of configuration of stereogenic centers bearing either hydroxyl or amine groups. More recently, this methodology has been applied for the derivatization of chiral primary alcohols thus determining the absolute configuration of stereogenic centers at a two- and three-bond distance from the hydroxyl group [5–8]. Moreover, the modified Mosher’s method has been used to determine the absolute configuration of primary alcohols with chiral methyl groups at C-2 [9]. However, it should be noted that this modification of Mosher’s method seemed to be unsuccessful for determining their stereochemistry of MTPA esters of some simple C-2 branched primary alcohols with conjugated groups or a consecutive chiral centre at C-3. According to Tsuda et al. the difference in chemical shift between diastereotopic oxymethylene protons is similar for both diastereomers [9]. We have previously performed a lipase-catalyzed synthesis of nonchiral and chiral N-(2-hydroxyalkyl)acrylamides (Scheme 1) [10, 11]. Scheme 1: Lipase-catalyzed synthesis of 2a– d. We employed the modified Mosher’s method for the determination of %ee. The absolute configuration of products was found to be (S). However, a report by Puertas et al. [12] describes the enantioselective behavior of Candida antarctica lipase B (CAL B) affording the (R)-acrylamides instead of (S)-acrylamides as products, using racemic amines as starting materials. Considering the absence of a conformational model for MTPA esters of -chiral primary alcohols and the results of our experiments showing opposite selectivity to previous experience, we decided to test the reliability of the method for our case. The aim of this work was to validate the results by conformational analysis of MTPA esters and thus obtain a reasonable explanation for NMR data on a molecular basis. 2. Results and Discussion We performed the synthesis of chiral N-(2-hydroxyalkyl)acrylamides 2a–d and their corresponding MTPA esters 3a–d

References

[1]  M. Nyerges, D. Bendell, A. Arany et al., “Silver acetate-catalysed asymmetric 1,3-dipolar cycloadditions of imines and chiral acrylamides,” Tetrahedron, vol. 61, no. 15, pp. 3745–3753, 2005.
[2]  Y. Tian, W. Lu, Y. Che, L. B. Shen, L. M. Jiang, and Z. Q. Shen, “Synthesis and characterization of macroporous silica modified with optically active poly[N-(oxazolinylphenyl)acrylamide] derivatives for potential application as chiral stationary phases,” Journal of Applied Polymer Science, vol. 115, no. 2, pp. 999–1007, 2010.
[3]  J. Tobis, Y. Thomann, and J. C. Tiller, “Synthesis and characterization of chiral and thermo responsive amphiphilic conetworks,” Polymer, vol. 51, no. 1, pp. 35–45, 2010.
[4]  J. M. Seco, E. Qui?oá, and R. Riguera, “The assignment of absolute configuration by NMR,” Chemical Reviews, vol. 104, no. 1, pp. 17–118, 2004.
[5]  T. Pehk, E. Lippmaam, M. Lopp, A. Pajú, B. C. Borer, and R. J. K. Taylor, “Determination of the absolute configuration of chiral secondary alcohols; new advances using 13C- and 2D-NMR spectroscopy,” Tetrahedron Asymm, vol. 4, no. 7, pp. 1527–1532, 1993.
[6]  K. Akiyama, S. Kawamoto, H. Fujimoto, and M. Ishibashi, “Absolute stereochemistry of TT-1 (rasfonin), an α-pyrone-containing natural product from a fungus, Trichurus terrophilus,” Tetrahedron Letters, vol. 44, no. 46, pp. 8427–8431, 2003.
[7]  J. L. Galman and H. C. Hailes, “Application of a modified Mosher's method for the determination of enantiomeric ratio and absolute configuration at C-3 of chiral 1,3-dihydroxy ketones,” Tetrahedron Asymmetry, vol. 20, no. 15, pp. 1828–1831, 2009.
[8]  L. V. Parfenova, T. V. Berestova, T. V. Tyumkina et al., “Enantioselectivity of chiral zirconocenes as catalysts in alkene hydro-, carbo- and cycloalumination reactions,” Tetrahedron Asymmetry, vol. 21, no. 3, pp. 299–310, 2010.
[9]  M. Tsuda, Y. Toriyabe, T. Endo, and J. Kobayashi, “Application of modified Mosher's method for primary alcohols with a methyl group at C2 position,” Chemical & Pharmaceutical Bulletin, vol. 51, no. 4, pp. 448–451, 2003.
[10]  E. M. Rustoy and A. Baldessari, “Chemoselective enzymatic preparation of N-hydroxyalkylacrylamides, monomers for hydrophilic polymer matrices,” Journal of Molecular Catalysis B: Enzymatic, vol. 39, no. 1–4, pp. 50–54, 2006.
[11]  L. N. Monsalve, E. M. Rustoy, and A. Baldessari, “Biocatalytic synthesis of chiral N-(2-hydroxyalkyl)-acrylamides,” Biocatalysis and Biotransformation, vol. 29, no. 2-3, pp. 87–95, 2011.
[12]  S. Puertas, R. Brieva, F. Rebolledo, and V. Gotor, “Lipase catalyzed aminolysis of ethyl propiolate and acrylic esters. Synthesis of chiral acrylamides,” Tetrahedron, vol. 49, no. 19, pp. 4007–4014, 1993.
[13]  R. J. Kazlauskas, A. N. E. Weissfloch, A. T. Rappaport, and L. A. Cuccia, “A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa,” Journal of Organic Chemistry, vol. 56, no. 8, pp. 2656–2665, 1991.
[14]  F. Francalanci, P. Cesti, W. Cabri, D. Bianchi, T. Martinengo, and M. Foà, “Lipase-catalyzed resolution of chiral 2-amino 1-alcohols,” Journal of Organic Chemistry, vol. 52, no. 23, pp. 5079–5082, 1987.
[15]  J. González-Sabín, V. Gotor, and F. Rebolledo, “Enantioselective acylation of rac-2-phenylcycloalkanamines catalyzed by lipases,” Tetrahedron: Asymmetry, vol. 16, no. 18, pp. 3070–3076, 2005.
[16]  X. Xia, Y.-H. Wang, B. Yang, and X. Wang, “Wheat germ lipase catalyzed kinetic resolution of secondary alcohols in non-aqueous media,” Biotechnology Letters, vol. 31, no. 1, pp. 83–87, 2009.
[17]  P. Hoyos, V. Pace, J. V. Sinisterra, and A. R. Alcántara, “Chemoenzymatic synthesis of chiral unsymmetrical benzoin esters,” Tetrahedron, vol. 67, no. 38, pp. 7321–7329, 2011.
[18]  S. Akai, T. Naka, S. Omura et al., “Lipase-catalyzed domino kinetic resolution/intramolecular Diels-Alder reaction: one-pot synthesis of optically active 7-oxabicyclo[2.2.1]heptenes from furfuryl alcohols and β-substituted acrylic acids,” Chemistry: A European Journal, vol. 8, pp. 4255–4264, 2002.
[19]  N. W. Fadnavis, M. Sharfuddin, and S. K. Vadivel, “Resolution of racemic 2-amino-1-butanol with immobilised penicillin G acylase,” Tetrahedron Asymmetry, vol. 10, no. 23, pp. 4495–4500, 1999.
[20]  A. Maraite, P. Hoyos, J. D. Carballeira, A. C. Cabrera, M. B. Ansorge-Schumacher, and A. R. Alcántara, “Lipase from Pseudomonas stutzeri: purification, homology modelling and rational explanation of the substrate binding mode,” Journal of Molecular Catalysis B: Enzymatic, vol. 87, pp. 88–98, 2013.
[21]  M. W. Schmidt, K. K. Baldridge, J. A. Boatz et al., “General atomic and molecular electronic structure system,” Journal of Computational Chemistry, vol. 14, no. 11, pp. 1347–1363, 1993.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133