全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Learning with repeated-game strategies

DOI: 10.3389/fnins.2014.00212

Keywords: adaptive models, experience weighted attraction model, finite automata

Full-Text   Cite this paper   Add to My Lib

Abstract:

We use the self-tuning Experience Weighted Attraction model with repeated-game strategies as a computer testbed to examine the relative frequency, speed of convergence and progression of a set of repeated-game strategies in four symmetric 2 × 2 games: Prisoner's Dilemma, Battle of the Sexes, Stag-Hunt, and Chicken. In the Prisoner's Dilemma game, we find that the strategy with the most occurrences is the “Grim-Trigger.” In the Battle of the Sexes game, a cooperative pair that alternates between the two pure-strategy Nash equilibria emerges as the one with the most occurrences. In the Stag-Hunt and Chicken games, the “Win-Stay, Lose-Shift” and “Grim-Trigger” strategies are the ones with the most occurrences. Overall, the pairs that converged quickly ended up at the cooperative outcomes, whereas the ones that were extremely slow to reach convergence ended up at non-cooperative outcomes.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133