Association of Active Human Herpesvirus-6, -7 and Parvovirus B19 Infection with Clinical Outcomes in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
Frequency of active human herpesvirus-6, -7 (HHV-6, HHV-7) and parvovirus B19 (B19) infection/coinfection and its association with clinical course of ME/CFS was evaluated. 108 ME/CFS patients and 90 practically healthy persons were enrolled in the study. Viral genomic sequences were detected by PCR, virus-specific antibodies and cytokine levels—by ELISA, HHV-6 variants—by restriction analysis. Active viral infection including concurrent infection was found in 64.8% (70/108) of patients and in 13.3% (12/90) of practically healthy persons. Increase in peripheral blood leukocyte DNA HHV-6 load as well as in proinflammatory cytokines' levels was detected in patients during active viral infection. Definite relationship was observed between active betaherpesvirus infection and subfebrility, lymphadenopathy and malaise after exertion, and between active B19 infection and multijoint pain. Neuropsychological disturbances were detected in all patients. The manifestation of symptoms was of more frequent occurrence in patients with concurrent infection. The high rate of active HHV-6, HHV-7 and B19 infection/coinfection with the simultaneous increase in plasma proinflammatory cytokines' level as well as the association between active viral infection and distinctive types of clinical symptoms shows necessity of simultaneous study of these viral infections for identification of possible subsets of ME/CFS. 1. Introduction Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease characterized by profound disabling fatigue lasting at least 6 months and accompanied by a combination of nonspecific symptoms. According to the 1994 US Center’s for Disease Control and Prevention (CDC) case definition, which at present, is widespread in research and clinical practice, at least four out of eight symptoms (impaired memory or concentration, sore throat, tender cervical or axillary lymph nodes, muscle pain, multi-joint pain, new headaches, sleep disturbances and post-exertion malaise) should be present in cases of ME/CFS [1]. During the clinical course of disease multiple body systems are affected by immune, neuroendocrine, musculoskeletal as well as psychiatric factors that reflect on the heterogeneity of the disease. Because fatigue is a common symptom of many diseases, a wide differential diagnosis needs to be done. The observation that many cases of the disease begin with a flu-like illness has prompted the hypothesis that viral infections are implicated in this disorder. Infections of human -herpesviruses-human herpesvirus-6 and -7 (HHV-6, HHV-7),
References
[1]
K. Fukuda, S. E. Straus, I. Hickie, M. C. Sharpe, J. G. Dobbins, and A. Komaroff, “The chronic fatigue syndrome: a comprehensive approach to its definition and study,” Annals of Internal Medicine, vol. 121, no. 12, pp. 953–959, 1994.
[2]
D. V. Ablashi, H. B. Eastman, C. B. Owen et al., “Frequent HHV-6 reactivation in multiple sclerosis (MS) and chronic fatigue syndrome (CFS) patients,” Journal of Clinical Virology, vol. 16, no. 3, pp. 179–191, 2000.
[3]
S. Chapenko, A. Krumina, S. Kozireva et al., “Activation of human herpesviruses 6 and 7 in patients with chronic fatigue syndrome,” Journal of Clinical Virology, vol. 37, supplement 1, pp. S47–S51, 2006.
[4]
A. M. Lerner, S. H. Beqaj, R. G. Deeter, and J. T. Fitzgerald, “IgM serum antibodies to human cytomegalovirus nonstructural gene products p52 and CM2 (UL44 and UL57) are uniquely present in a subset of patients with chronic fatigue syndrome,” In Vivo, vol. 16, no. 3, pp. 153–159, 2002.
[5]
A. M. Lerner, S. H. Beqaj, R. G. Deeter, and J. T. Fitzgerald, “IgM serum antibodies to Epstein-Barr virus are uniquely present in a subset of patients with the chronic fatigue syndrome,” In Vivo, vol. 18, no. 2, pp. 101–106, 2004.
[6]
A. M. Lerner, S. H. Beqaj, R. G. Deeter, and J. T. Fitzgerald, “Valacyclovir treatment in Epstein-Barr virus subset chronic fatigue syndrome: thirty-six months follow-up,” In Vivo, vol. 21, no. 5, pp. 707–713, 2007.
[7]
J. R. Kerr, J. Bracewell, I. Laing et al., “Chronic fatigue syndrome and arthralgia following parvovirus B19 infection,” Journal of Rheumatology, vol. 29, no. 3, pp. 595–602, 2002.
[8]
M. Frémont, K. Metzger, H. Rady, J. Hulstaert, and K. De Meirleir, “Detection of herpesviruses and parvovirus B19 in gastric and intestinal mucosa of chronic fatigue syndrome patients,” In Vivo, vol. 23, no. 2, pp. 209–213, 2009.
[9]
M. Seishima, Y. Mizutani, Y. Shibuya, and C. Arakawa, “Chronic fatigue syndrome after human parvovirus B19 infection without persistent viremia,” Dermatology, vol. 216, no. 4, pp. 341–346, 2008.
[10]
J. K. S. Chia and A. Y. Chia, “Chronic fatigue syndrome is associated with chronic enterovirus infection of the stomach,” Journal of Clinical Pathology, vol. 61, no. 1, pp. 43–48, 2008.
[11]
A. S. Bansal, A. S. Bradley, K. N. Bishop, S. Kiani-Alikhan, and B. Ford, “Chronic fatigue syndrome, the immune system and viral infection,” Brain, Behavior, and Immunity, vol. 26, no. 1, pp. 24–31, 2012.
[12]
W. C. Reeves, F. R. Stamey, J. B. Black, A. C. Mawle, J. A. Stewart, and P. E. Pellett, “Human herpesviruses 6 and 7 in chronic fatigue syndrome: a case-control study,” Clinical Infectious Diseases, vol. 31, no. 1, pp. 48–52, 2000.
[13]
N. E. Soto and S. E. Straus, “Chronic fatigue syndrome and herpesviruses: the fading evidence,” Herpes, vol. 7, no. 2, pp. 46–50, 2000.
[14]
A. L. Komaroff, “Is human herpesvirus-6 a trigger for chronic fatigue syndrome?” Journal of Clinical Virology, vol. 37, supplement 1, pp. S39–S46, 2006.
[15]
B. Cameron, L. Flamand, H. Juwana et al., “Serological and virological investigation of the role of the herpesviruses EBV, CMV and HHV-6 in post-infective fatigue syndrome,” Journal of Medical Virology, vol. 82, no. 10, pp. 1684–1688, 2010.
[16]
T. Saiki, T. Kawai, K. Morita et al., “Identification of marker genes for differential diagnosis of chronic fatigue syndrome,” Molecular Medicine, vol. 14, no. 9-10, pp. 599–607, 2008.
[17]
M. Bhattacharjee, C. H. Botting, and M. J. Sillanp??, “Bayesian biomarker identification based on marker-expression proteomics data,” Genomics, vol. 92, no. 6, pp. 384–392, 2008.
[18]
J. R. Kerr, B. Burke, R. Petty et al., “Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes,” Journal of Clinical Pathology, vol. 61, no. 6, pp. 730–739, 2008.
[19]
D. V. Ablashi, N. Balachandran, S. F. Josephs et al., “Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates,” Virology, vol. 184, no. 2, pp. 545–552, 1991.
[20]
F. Santoro, P. E. Kennedy, G. Locatelli, M. S. Malnati, E. A. Berger, and P. Lusso, “CD46 is a cellular receptor for human herpesvirus 6,” Cell, vol. 99, no. 7, pp. 817–827, 1999.
[21]
Y. E. Cossart, A. M. Field, B. Cant, and D. Widdows, “Parvovirus like particles in human sera,” The Lancet, vol. 1, no. 7898, pp. 72–73, 1975.
[22]
K. E. Brown, S. M. Anderson, and N. S. Young, “Erythrocyte P antigen: cellular receptor for B19 parvovirus,” Science, vol. 262, no. 5130, pp. 114–117, 1993.
[23]
M. S?derlund-Venermo, K. Hokynar, J. Nieminen, H. Rautakorpi, and K. Hedman, “Persistence of human parvovirus B19 in human tissues,” Pathologie Biologie, vol. 50, no. 5, pp. 307–316, 2002.
[24]
L. Liefeldt, M. Buhl, B. Schweickert et al., “Eradication of parvovirus B19 infection after renal transplantation requires reduction of immunosuppression and high-dose immunoglobulin therapy,” Nephrology Dialysis Transplantation, vol. 17, no. 10, pp. 1840–1842, 2002.
[25]
L. B. Krupp, N. G. LaRocca, J. Muir-Nash, and A. D. Steinberg, “The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus,” Archives of Neurology, vol. 46, no. 10, pp. 1121–1123, 1989.
[26]
P. Secchiero, D. R. Carrigan, Y. Asano et al., “Detection of human herpesvirus 6 in plasma of children with primary infection and immunosuppressed patients by polymerase chain reaction,” Journal of Infectious Diseases, vol. 171, no. 2, pp. 273–280, 1995.
[27]
Z. N. Berneman, D. V. Ablashi, G. Li et al., “Human herpesvirus 7 is a T-lymphotropic virus and is related to, but significantly different from, human herpesvirus 6 and human cytomegalovirus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 21, pp. 10552–10556, 1992.
[28]
R. Cavallo, C. Merlino, D. Re et al., “B19 virus infection in renal transplant recipients,” Journal of Clinical Virology, vol. 26, no. 3, pp. 361–368, 2003.
[29]
F. Albright, K. Light, A. Light, L. Bateman, and L. A. Cannon-Albright, “Evidence for a heritable predisposition to chronic fatigue syndrome,” BMC Neurology, vol. 11, article 62, 2011.
[30]
B. M. Carruthers, M. I. Van de Sande, K. L. De Meirleir et al., “Myalgic encephalomyelitis: international consensus criteria,” Journal of Internal Medicine, vol. 270, no. 4, pp. 327–338, 2011.
[31]
M. Patnaik, A. L. Komaroff, E. Conley, E. A. Ojo-Amaize, and J. B. Peter, “Prevalence of IgM antibodies to human herpesvirus 6 early antigen (p41/38) in patients with chronic fatigue syndrome,” Journal of Infectious Diseases, vol. 172, no. 5, pp. 1364–1367, 1995.
[32]
D. M. Koelle, S. Barcy, M. L. Huang et al., “Markers of viral infection in monozygotic twins discordant for chronic fatigue syndrome,” Clinical Infectious Diseases, vol. 35, no. 5, pp. 518–525, 2002.
[33]
S. Kozireva, G. Nemceva, I. Danilane, O. Pavlova, J. Blomberg, and M. Murovska, “Prevalence of blood-borne viral infections (cytomegalovirus, human herpesvirus-6, human herpesvirus-7, human herpesvirus-8, human T-cell lymphotropic virus-I/II, human retrovirus-5) among blood donors in Latvia,” Annals of Hematology, vol. 80, no. 11, pp. 669–673, 2001.
[34]
M. Ihira, T. Yoshikawa, K. Suzuki et al., “Monitoring of active HHV-6 infection in bone marrow transplant recipients by real time PCR; comparison to detection of viral DNA in plasma by qualitative PCR,” Microbiology and Immunology, vol. 46, no. 10, pp. 701–705, 2002.
[35]
P. Lusso, “HHV-6 and the immune system: mechanisms of immunomodulation and viral escape,” Journal of Clinical Virology, vol. 37, supplement 1, pp. S4–S10, 2006.
[36]
J. R. Kerr and D. A. J. Tyrrell, “Cytokines in parvovirus B19 infection as an aid to understanding chronic fatigue syndrome,” Current Pain and Headache Reports, vol. 7, no. 5, pp. 333–341, 2003.
[37]
M. A. Fletcher, X. R. Zeng, Z. Barnes, S. Levis, and N. G. Klimas, “Plasma cytokines in women with chronic fatigue syndrome,” Journal of Translational Medicine, vol. 7, article 96, 2009.
[38]
U. Vollmer-Conna, B. Cameron, D. Hadzi-Pavlovic et al., “Postinfective fatigue syndrome is not associated with altered cytokine production,” Clinical Infectious Diseases, vol. 45, no. 6, pp. 732–735, 2007.