Reliable techniques must be developed to predict phosphorus (P) storage and release from soils of uplands, ditches, streams, and wetlands in order to better understand the natural, anthropogenic, and legacy sources of P and their impact on water quality at a field/plot as well as larger scales. A concept called the “safe” soil phosphorus storage capacity (SPSC) that is based on a threshold phosphorus saturation ratio (PSR) has been developed; the PSR is the molar ratio of P to Fe and Al, and SPSC is a PSR-based calculation of the remaining soil P storage capacity that captures risks arising from previous loading as well as inherently low P sorption capacity of a soil. Zero SPSC amounts to a threshold value below which P runoff or leaching risk increases precipitously. In addition to the use of the PSR/SPSC concept for P risk assessment and management, and its ability to predict isotherm parameters such as the Langmuir strength of bonding, , and the equilibrium P concentration, EPC0, this simple, cost-effective, and quantitative approach has the potential to be used as an agronomic tool for more precise application of P for plant uptake. 1. Introduction Concern about the environmental fate of phosphorus (P) has arisen from evidence that P derived from land-applied animal wastes and fertilizers can potentially promote eutrophication of water bodies [1–9]. There is a need to develop ways of managing nutrients such that risks to the environment are minimized. This paper describes a field test approach that we call the “soil P storage capacity” (SPSC) which enables the on-site prediction of how much P can be added to a soil prior to development of significant risk of P leaching and/or runoff. “Soil-test P” (STP) procedures that were initially developed for crop nutrient recommendations have been adapted to environmental risk assessment for P loss [10–13]. Another approach used in P risk assessment involves a “change point” phenomenon, which corresponds to a threshold of P loading where a marked increase in solution P concentration is observed [14]. The change point threshold is expressed in terms of the molar ratio of extractable P to the sum of extractable Al and Fe [14–17]. The latter ratio is called the P saturation ratio (PSR). The PSR can be determined by various extractants, including those used for STP. The STP and PSR have two shortcomings stemming from failure to capture P retention capacity: (i) a low value is not indicative of a safe application site and (ii) neither provides a means of predicting the “safe lifespan” of an application site.
References
[1]
L. H. Allen Jr., “Dairy-siting criteria and other options for wastewater management on high water-table soils,” Soil & Crop Science Society of Florida, vol. 47, pp. 108–127, 1987.
[2]
A. C. Federico, F. E. Davis, K. G. Dickson, and C. R. Kratzer, Lake Okeechobee Water Quality Studies and Eutrophication Assessment, South Florida Water Management District Technical Publications, South Florida Water Management District, West Palm Beach, Fla, USA, 1981.
[3]
M. D. Webber, “Phosphorus in relation to water quality: great Lakes water quality and the phosphorus removal program,” in Phosphorus in Sewage Sludge and Animal Waste Slurries, T. W. G. Hucker and G. Catroux, Eds., pp. 5–20, D. Reidel Publishing Co., Boston, Mass, USA, 1981.
[4]
O. F. Schoumans, A. W. Breeuwsma, and W. de Vries, “Use of soil survey information for assessing the phosphate sorption capacity of heavily manured soils,” in Proceedings of the International Conference on Vulnerability of Soil and Groundwater to Pollutants, W. van Duijvenbooden and H. G. van Waegeningh, Eds., pp. 1079–1088, Noordwijk aan Zee, The Netherlands, 1987.
[5]
A. Breeuwsma and S. Silva, “Phosphorus fertilisation and environmental effects in The Netherlands and the Po Region (Italy),” Report 57, Agricultural Research Department, The Winand Staring Centre for Integrated Land, Soil, and Water Research, Wageningen , The Netherlands, 1992.
[6]
A. N. Sharpley, M. J. Hedley, E. Sibbeson, A. Hillbricht-Ilkowska, W. A. House, and L. Ryszkowski, “Phosphorus transfers from terrestrial to aquatic ecosystems,” in Phosphorus in the Global Environment, H. Tiessen, Ed., pp. 171–200, John Wiley & Sons, New York, NY, USA, 1995.
[7]
J. I. Lemunyon and T. C. Daniel, “Phosphorus management for water quality protection: a national effort,” in Soil Testing for Phosphorus: Environmental Uses and Implications, J. T. Sims, Ed., SERA-IEG 17 USDA-CREES Regional Committee: Minimizing agricultural phosphorus losses for protection of the water resource, 1997.
[8]
D. L. Correll, “The role of phosphorus in the eutrophication of receiving waters: a review,” Journal of Environmental Quality, vol. 27, pp. 261–266, 1998.
[9]
R. Parry, “Agricultural phosphorus and water quality: a U.S. environmental protection agency perspective,” Journal of Environmental Quality, vol. 27, no. 2, pp. 258–261, 1998.
[10]
P. A. Moore Jr., B. C. Joern, and T. L. Provin, “Improvements needed in environmental soil testing for phosphorus,” in Soil Testing for Phosphorus: Environmental Uses and Implications. SERA-IEG 17 USDA-CREES Regional Committee: Minimizing Agricultural Phosphorus Losses for Protection of the Water Resource, T. J. Sims, Ed., 1997.
[11]
A. N. Sharpley, T. T. Daniel, J. Sims, R. Lemunyon, R. Stevens, and R. Parry, Agricultural Phosphorus and Eutophication, United States Department of Agriculture, Agricultural Research Service, 1999.
[12]
N. Hesketh and P. C. Brookes, “Development of an indicator for risk of phosphorus leaching,” Journal of Environmental Quality, vol. 29, no. 1, pp. 105–110, 2000.
[13]
J. T. Sims, A. C. Edwards, O. F. Schoumans, and R. R. Simard, “Integrating soil phosphorus testing into environmentally based agricultural management practices,” Journal of Environmental Quality, vol. 29, no. 1, pp. 60–71, 2000.
[14]
V. D. Nair, K. M. Portier, D. A. Graetz, and M. L. Walker, “An environmental threshold for degree of phosphorus saturation in sandy soils,” Journal of Environmental Quality, vol. 33, no. 1, pp. 107–113, 2004.
[15]
M. A. Beck, L. W. Zelazny, W. L. Daniels, and G. L. Mullins, “Using the mehlich-1 extract to estimate soil phosphorus saturation for environmental risk assessment,” Soil Science Society of America Journal, vol. 68, no. 5, pp. 1762–1771, 2004.
[16]
R. O. Maguire and J. T. Sims, “Soil testing to predict phosphorus leaching,” Journal of Environmental Quality, vol. 31, no. 5, pp. 1601–1609, 2002.
[17]
V. D. Nair and W. G. Harris, “A capacity factor as an alternative to soil test phosphorus in phosphorus risk assessment,” The New Zealand Journal of Agricultural Research, vol. 47, no. 4, pp. 491–497, 2004.
[18]
V. D. Nair, “Soil phosphorus saturation ratio for risk assessment in land use systems,” Frontiers in Environmental Science: Agroecology and Land Use Systems, 2014.
[19]
M. Chrysostome, V. D. Nair, W. G. Harris, and R. D. Rhue, “Laboratory validation of soil phosphorus storage capacity predictions for use in risk assessment,” Soil Science Society of America Journal, vol. 71, no. 5, pp. 1564–1569, 2007.
[20]
J. A. McKeague and J. H. Day, “Dithionate and oxalate-extractable Fe and Al as aids in differentiating various classes of soils,” Canadian Journal of Soil Science, vol. 46, pp. 13–22, 1966.
[21]
V. D. Nair, W. G. Harris, D. Chakraborty, and M. Chrysostome, “Understanding soil phosphorus storage capacity,” SL 336, 2010, http://edis.ifas.ufl.edu/pdffiles/SS/SS54100.pdf.
[22]
D. Chakraborty, V. D. Nair, M. Chrysostome, and W. G. Harris, “Soil phosphorus storage capacity in manure-impacted Alaquods: implications for water table management,” Agriculture, Ecosystems and Environment, vol. 142, no. 3-4, pp. 167–175, 2011.
[23]
D. Chakraborty, V. D. Nair, W. G. Harris, and R. D. Rhue, “Environmentally relevant phosphorus retention capacity of sandy coastal plain soils,” Soil Science, vol. 177, no. 12, pp. 701–707, 2012.
[24]
D. Chakraborty, V. D. Nair, and W. G. Harris, “Compositional differences between alaquods and paleudults affecting phosphorus sorption-desorption behavior,” Soil Science, vol. 177, no. 3, pp. 188–197, 2012.
[25]
V. D. Nair, M. W. Clark, and K. R. Reddy, “Wetland soils nutrient index development and evaluation of “safe” soil phosphorus storage capacity,” Final Report to FDACS Contract Number 00073946 (Agency Number 014820), FDACS, Tallahassee, Fla, USA, 2011.
[26]
B. Eghball, J. E. Gilley, D. D. Baltensperger, and J. M. Blumenthal, “Long-term manure and fertilizer application. Effects on phosphorus and nitrogen in Runoff,” Biological Systems Engineering: Papers and Publications Paper 21, 2002, http://digitalcommons.unl.edu/biosysengfacpub/21.
[27]
W. G. Harris, V. D. Nair, R. D. Rhue, and D. A. Graetz, “Deliverable 2. Progress report on source materials characterization and implications for effects. Site-specific determination of soil capacity to assimilate or release P applied as manure, fertilizer, compost, or biosolids,” Report to FDACS 0061873, FDACS, Tallahassee, Fla, USA, 2007.
[28]
T. J. Rew, D. A. Graetz, M. S. Josan, V. D. Nair, and W. G. Harris, “Phosphorus mobility from organic and inorganic soil amendments: rainfall simulation studies,” in Proceedings of the ASA /CSSA/SSSA 2007 International Annual Meetings, CD Rom Publication, New Orleans, Louisiana, 2007.
[29]
A. Sharpley, H. P. Jarvie, A. Buda, L. May, B. Spears, and P. Kleinman, “Phosphorus legacy: practices to mitigate future water quality impairment,” Journal of Environmental Quality, vol. 42, pp. 1308–1326, 2013.
[30]
V. D. Nair, D. A. Graetz, and K. M. Portier, “Forms of phosphorus in soil profiles from dairies of South Florida,” Soil Science Society of America Journal, vol. 59, no. 5, pp. 1244–1249, 1995.
[31]
A. S. Andres and J. T. Sims, “Assessing potential impacts of a wastewater rapid infiltration basin system on groundwater quality: a delaware case study,” Journal of Environmental Quality, vol. 42, no. 2, pp. 391–404, 2013.
[32]
J. Showalter, V. D. Nair, D. Chakraborty, L. Liu, and Z. He, “Identifying soil phosphorus sources and sinks within land-use systems of the Lak e Okeechobee Basin,” in Proceedings of the Southern Branch ASA Annual Meeting, Orlando, Fla, USA, 2010.
[33]
T. Z. Osborne and R. D. DeLaune, “Soil and sediment sampling of inundated environments,” in Methods on Biogeochemistry of Wetlands, R. DeLaune, K. R. Reddy, C. J. Richardson, and P. Megonigal, Eds., pp. 21–40, Soil Science Society of America Publication, Madison, Wis, USA, 2013.
[34]
S. Shukla, W. Graham, A. Hodges, V. D. Nair, and M. Christman, “Evaluation of cow-calf best management practices with regards to nutrient discharges in the Lake Okeechobee Basin,” Contract Number 00074969, Final Report to FDACS, Tallahassee, Fla, USA, 2011.
[35]
B. Dari, V. D. Nair, R. D. Rhue, and R. Mylavarapu, “Relationship of Langmuir parameters to the soil phosphorus saturation ratio,” in Proceedings of the ASA/CSSA/SSSA International Annual Meetings, CD Rom Publication, 2012.