A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA) characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural “social signal transduction” pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.
References
[1]
Cacioppo JT, Hawkley LC (2009) Perceived social isolation and cognition. Trends Cogn Sci 13: 447–454. doi: 10.1016/j.tics.2009.06.005
[2]
Wilson EO (2012) The Social Conquest of Earth. New York: Liveright Publishing, W. W. Norton.
[3]
Cole SW (2013) Social regulation of human gene expression: mechanisms and implications for public health. Am J Public Health 103 Suppl 1: S84–S92. doi: 10.2105/ajph.2012.301183
[4]
Gibson G (2008) The environmental contribution to gene expression profiles. Nat Rev Genet 9: 575–581. doi: 10.1038/nrg2383
[5]
Irwin MR, Cole SW (2011) Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol 11: 625–632. doi: 10.1038/nri3042
[6]
Robinson GE, Fernald RD, Clayton DF (2008) Genes and social behavior. Science 322: 896–900. doi: 10.1126/science.1159277
[7]
Tung J, Barreiro LB, Johnson ZP, Hansen KD, Michopoulos V, et al. (2012) Social environment is associated with gene regulatory variation in the rhesus macaque immune system. Proc Natl Acad Sci U S A 109: 6490–6495. doi: 10.1073/pnas.1202734109
[8]
Cole SW, Arevalo JM, Ruggerio AM, Heckman JJ, Suomi S (2012) Transcriptional modulation of the developing immune system by early life social adversity. Proc Natl Acad Sci U S A 109: 20578–20583. doi: 10.1073/pnas.1218253109
[9]
Powell ND, Sloan EK, Bailey MT, Arevalo JM, Miller GE, et al. (2013) Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. Proc Natl Acad Sci U S A 110: 16574–16579. doi: 10.1073/pnas.1310655110
[10]
Churchland PS (2011) Braintrust: what neuroscience tells us about morality. Princeton (New Jersey): Princeton University Press.
[11]
Idaghdour Y, Czika W, Shianna KV, Lee SH, Visscher PM, et al. (2010) Geographical genomics of human leukocyte gene expression variation in southern Morocco. Nat Genet 42: 62–67. doi: 10.1038/ng.495
[12]
Nath AP, Arafat D, Gibson G (2012) Using blood informative transcripts in geographical genomics: impact of lifestyle on gene expression in fijians. Front Genet 3: 243. doi: 10.3389/fgene.2012.00243
[13]
Holt-Lunstad J, Smith TB, Layton JB (2010) Social relationships and mortality risk: a meta-analytic review. PLoS Med 7: e1000316. doi: 10.1371/journal.pmed.1000316
[14]
Cole SW, Hawkley LC, Arevalo JM, Sung CY, Rose RM, et al. (2007) Social regulation of gene expression in human leukocytes. Genome Biol 8: 1–13. doi: 10.1186/gb-2007-8-9-r189
[15]
Cole SW, Hawkley LC, Arevalo JM, Cacioppo JT (2011) Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proc Natl Acad Sci U S A 108: 3080–3085. doi: 10.1073/pnas.1014218108
[16]
Seeman TE (1996) Social ties and health: the benefits of social integration. Ann Epidemiol 6: 442–451. doi: 10.1016/s1047-2797(96)00095-6
[17]
Chen E, Miller GE, Walker HA, Arevalo JM, Sung CY, et al. (2009) Genome-wide transcriptional profiling linked to social class in asthma. Thorax 64: 38–43. doi: 10.1136/thx.2007.095091
[18]
Miller GE, Chen E, Fok AK, Walker H, Lim A, et al. (2009) Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A 106: 14716–14721. doi: 10.1073/pnas.0902971106
[19]
Cole S, Arevalo J, Takahashi R, Sloan EK, Lutgendorf S, et al. (2010) Computational identification of gene-social environment interaction at the human IL6 locus. Proc Natl Acad Sci U S A 107: 5681–5686. doi: 10.1073/pnas.0911515107
[20]
Chen E, Miller GE, Kobor MS, Cole SW (2011) Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood. Mol Psychiatry 16: 729–737. doi: 10.1038/mp.2010.53
[21]
Miller GE, Chen E, Sze J, Marin T, Arevalo JM, et al. (2008) A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-kappaB signaling. Biol Psychiatry 64: 266–272. doi: 10.1016/j.biopsych.2008.03.017
[22]
Miller GE, Murphy MLM, Cashman R, Ma R, Arevalo JMG, et al. (2014) Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain, Behavior, and Immunity In press. doi: 10.1016/j.bbi.2014.05.016.
Segman RH, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, et al. (2005) Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry 10: 500–513, 425. doi: 10.1038/sj.mp.4001636
[25]
O'Donovan A, Sun B, Cole S, Rempel H, Lenoci M, et al. (2011) Transcriptional control of monocyte gene expression in post-traumatic stress disorder. Dis Markers 30: 123–132. doi: 10.1155/2011/560572
[26]
Antoni MH, Lutgendorf SK, Blomberg B, Stagl J, Carver CS, et al. (2012) Transcriptional modulation of human leukocytes by cognitive-behavioral stress management in women undergoing treatment for breast cancer. Biological Psychiatry 71: 366–372. doi: 10.1016/j.biopsych.2011.10.007
[27]
Cohen L, Cole SW, Sood AK, Prinsloo S, Kirschbaum C, et al. (2012) Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: role of inflammatory signaling. PLoS ONE 7: e42324. doi: 10.1371/journal.pone.0042324
[28]
Cole SW (2010) Elevating the perspective on human stress genomics. Psychoneuroendocrinology 35: 955–962. doi: 10.1016/j.psyneuen.2010.06.008
Creswell JD, Irwin MR, Burklund LJ, Lieberman MD, Arevalo JM, et al. (2012) Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: A small randomized controlled trial. Brain Behav Immun 26: 1095–1101. doi: 10.1016/j.bbi.2012.07.006
[31]
Black DS, Cole SW, Irwin MR, Breen E, St Cyr NM, et al. (2012) Yogic meditation reverses NF-kappaB and IRF-related transcriptome dynamics in leukocytes of family dementia caregivers in a randomized controlled trial. Psychoneuroendocrinology 38: 348–55. doi: 10.1016/j.psyneuen.2012.06.011
[32]
Bower JE, Greendale G, Crosswell AD, Garet D, Sternlieb B, et al. (2014) Yoga reduces inflammatory signaling in fatigued breast cancer survivors: A randomized controlled trial. Psychoneuroendocrinology 43: 20–29. doi: 10.1016/j.psyneuen.2014.01.019
[33]
Irwin M, Olmstead R, Breen E, Witarama T, Carrillo C, et al. (2014) Tai Chi Chih reduces cellular and genomic markers of inflammation in breast cancer survivors with insomnia. J Natl Cancer Inst In press.
[34]
Collado-Hidalgo A, Sung C, Cole S (2006) Adrenergic inhibition of innate anti-viral response: PKA blockade of Type I interferon gene transcription mediates catecholamine support for HIV-1 replication. Brain Behav Immun 20: 552–563. doi: 10.1016/j.bbi.2006.01.005
[35]
Wohleb ES, McKim DB, Shea DT, Powell ND, Tarr AJ, et al. (2014) Re-establishment of Anxiety in Stress-Sensitized Mice Is Caused by Monocyte Trafficking from the Spleen to the Brain. Biol Psychiatry 75: 970–981. doi: 10.1016/j.biopsych.2013.11.029
[36]
Slavich GM, Cole SW (2013) The emerging field of human social genomics. Clin Psychol Sci 1: 331–348. doi: 10.1177/2167702613478594
[37]
Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102: 10604–10609. doi: 10.1073/pnas.0500398102
[38]
Borghol N, Suderman M, McArdle W, Racine A, Hallett M, et al. (2011) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 41: 62–74. doi: 10.1093/ije/dyr147
[39]
Essex MJ, Thomas Boyce W, Hertzman C, Lam LL, Armstrong JM, et al. (2011) Epigenetic Vestiges of Early Developmental Adversity: Childhood Stress Exposure and DNA Methylation in Adolescence. Child Dev 84: 58–75. doi: 10.1111/j.1467-8624.2011.01641.x
[40]
Naumova OY, Lee M, Koposov R, Szyf M, Dozier M, et al. (2012) Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Dev Psychopathol 24: 143–155. doi: 10.1017/s0954579411000605
[41]
Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, et al. (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A 109 Suppl 2: 17253–17260. doi: 10.1073/pnas.1121249109
[42]
Cole SW (2013) Nervous system regulation of the cancer genome. Brain Behav Immun 30 Suppl: S10–S18. doi: 10.1016/j.bbi.2012.11.008
[43]
Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, et al. (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12: 939–944. doi: 10.1038/nm1447
[44]
Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, et al. (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70: 7042–7052. doi: 10.1158/0008-5472.can-10-0522
[45]
Volden PA, Conzen SD (2013) The influence of glucocorticoid signaling on tumor progression. Brain Behav Immun 30 Suppl: S26–31. doi: 10.1016/j.bbi.2012.10.022
[46]
Hermes GL, Delgado B, Tretiakova M, Cavigelli SA, Krausz T, et al. (2009) Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc Natl Acad Sci U S A 106: 22393–22398. doi: 10.1073/pnas.0910753106
[47]
Williams JB, Pang D, Delgado B, Kocherginsky M, Tretiakova M, et al. (2009) A model of gene-environment interaction reveals altered mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev Res (Phila) 2: 850–861. doi: 10.1158/1940-6207.capr-08-0238
[48]
Volden PA, Wonder EL, Skor MN, Carmean CM, Patel FN, et al. (2013) Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue. Cancer Prev Res (Phila) 6: 634–645. doi: 10.1158/1940-6207.capr-12-0458
[49]
Feng Z, Liu L, Zhang C, Zheng T, Wang J, et al. (2012) Chronic restraint stress attenuates p53 function and promotes tumorigenesis. Proc Natl Acad Sci U S A 109: 7013–7018. doi: 10.1073/pnas.1203930109
[50]
Pang D, Kocherginsky M, Krausz T, Kim SY, Conzen SD (2006) Dexamethasone decreases xenograft response to Paclitaxel through inhibition of tumor cell apoptosis. Cancer Biol Ther 5: 933–940. doi: 10.4161/cbt.5.8.2875
[51]
Wu W, Pew T, Zou M, Pang D, Conzen SD (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MPK-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem 280: 4117–4124. doi: 10.1074/jbc.m411200200
[52]
Luca F, Kashyap S, Southard C, Zou M, Witonsky D, et al. (2009) Adaptive variation regulates the expression of the human SGK1 gene in response to stress. PLoS Genet 5: e1000489. doi: 10.1371/journal.pgen.1000489
[53]
Fox Keller E (2012) Genes, genomes, and genomics. Biological Theory 6: 132–140. doi: 10.1007/s13752-012-0014-x
[54]
Fredrickson BL, Grewen KM, Coffey KA, Algoe SB, Firestine AM, et al. (2013) A functional genomic perspective on human well-being. Proc Natl Acad Sci U S A 110: 13684–13689. doi: 10.1073/pnas.1305419110
[55]
Dusek JA, Otu HH, Wohlhueter AL, Bhasin M, Zerbini LF, et al. (2008) Genomic counter-stress changes induced by the relaxation response. PLoS ONE 3: e2576. doi: 10.1371/journal.pone.0002576
[56]
Bhasin MK, Dusek JA, Chang BH, Joseph MG, Denninger JW, et al. (2013) Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS ONE 8: e62817. doi: 10.1371/journal.pone.0062817
[57]
Qu S, Olafsrud SM, Meza-Zepeda LA, Saatcioglu F (2013) Rapid gene expression changes in peripheral blood lymphocytes upon practice of a comprehensive yoga program. PLoS ONE 8: e61910. doi: 10.1371/journal.pone.0061910
[58]
Kaliman P, Alvarez-Lopez MJ, Cosin-Tomas M, Rosenkranz MA, Lutz A, et al. (2014) Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology 40: 96–107. doi: 10.1016/j.psyneuen.2013.11.004
[59]
Cole SW (2005) The complexity of dynamic host networks. In: Deisboeck TS, Kresh JY, editors. Complex Systems Science in BioMedicine. New York: Kluwer Academic - Plenum Publishers. pp. 605–629.
[60]
Fowler JH, Dawes CT, Christakis NA (2009) Model of genetic variation in human social networks. Proc Natl Acad Sci U S A 106: 1720–1724. doi: 10.1073/pnas.0806746106
[61]
Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9: 46–56. doi: 10.1038/nrn2297
[62]
Inagaki TK, Muscatell KA, Irwin MR, Cole SW, Eisenberger NI (2012) Inflammation selectively enhances amygdala activity to socially threatening images. Neuroimage 59: 3222–3226. doi: 10.1016/j.neuroimage.2011.10.090
[63]
Eisenberger NI, Inagaki TK, Mashal NM, Irwin MR (2010) Inflammation and social experience: an inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain Behav Immun 24: 558–563. doi: 10.1016/j.bbi.2009.12.009
[64]
Preininger M, Arafat D, Kim J, Nath AP, Idaghdour Y, et al. (2013) Blood-informative transcripts define nine common axes of peripheral blood gene expression. PLoS Genet 9: e1003362. doi: 10.1371/journal.pgen.1003362