Structural and magnetic
studies of monophasic maghemite (γ-Fe2O3)
magnetic nanocrystallites (MNCs) synthesized by the co-precipitation chemical
route are reported in this paper. For the synthesis, a starting precursor of
magnetite (Fe3O4)
in basic medium was oxidized at room temperature by adjusting the pH = 3.5
at 80°C in an acidic medium without surfactants. X-ray diffraction (XRD)
pattern shows widened peaks indicating nanometric size and Rietveld Refinement confirms
only one single-phase assigned to γ-Fe2O3 MNCs. High Resolution Transmission Electron Microscopy (HR-TEM) demonstrates
the formation of nanoparticles with diameter around D ≈ 6.8 ± 0.1 nm which is in good agreement with Rietveld Refinement
(6.4 ± 1 nm). A selected area electron diffraction pattern was carried out to
complement the study of the crystalline structure of the γ-Fe2O3 MNCs. M(H) measurements taken
at different temperatures show almost zero coercivity and remanence indicating
superparamagnetic domain and high magnetic saturation.
References
[1]
Yu, S.F., Wu, G.L., Gu, X., Wang, J.J., Wang, Y.N., Gao, H. and Ma, J.B. (2013) Magnetic and pH-Sensitive Nanoparticles for Antitumor Drug Delivery. Colloids and Surfaces B: Biointerfaces, 103, 15-22. http://dx.doi.org/10.1016/j.colsurfb.2012.10.041
[2]
Asuha, S., Gao, Y.W., Deligeer, W., Yu, M., Suyala, B. and Zhao, S. (2011) Adsorptive Removal of Methyl Orange Using Mesoporousmaghemite. Journal of Porous Materials, 18, 581-587. http://dx.doi.org/10.1007/s10934-010-9412-2
[3]
Liu, Y., Gao, Y. and Xu, C.J. (2013) Using Magnetic Nanoparticles to Manipulate Biological Objects. Chinese Physics B, 22, Article ID: 097503.
[4]
Shan, Z., Wu, Z., Chen, H., Zhang, Z.M., Zhou, Y., Wen, A.X., Oakes, K.D. and Servos, M.R. (2012) PCR-Ready Human DNA Extraction from Urine Samples Using Magnetic Nanoparticles. Journal of Chromatography B, 881-882, 63-68.
[5]
Zare, L. and Nikpassand, M. (2012) Evaluation of Nano Fe3O4 as a Green Catalyst for the Synthesis of Mono, Bis and Tris Diindolyl Methanes. Journal of Chemistry, 9, 1623-1631.
[6]
Chandrappa, K.G. and Venkatesha, T.V. (2012) Electrochemical Bulk Synthesis of Fe3O4 and α-Fe2O3 Nanoparticles and Its Zn-Co-α-Fe2O3 Composite Thin Films for Corrosion Protection. Materials and Corrosion, 63, Article No. 9999.
[7]
Zhang, S.F., Ren, F., Wu, W., Zhou, J., Xiao, X.H., Sun, L.L., Liu, Y. and Jiang, C.Z. (2013) Controllable Synthesis of Recyclable Core Shell γ-Fe2O3.SnO2 Hollow Nanoparticles with Enhanced Photocatalytic and Gas Sensing Properties. Physical Chemistry Chemical Physics, 15, 8228. http://dx.doi.org/10.1039/c3cp50925g
[8]
Zhang, S., Qi, Y.Y., Yang, H., Gong, M.F., Zhang, D. and Zou, L.G. (2013) Optimization of the Composition of Bimetallic Core/Shell Fe2O3/Au Nanoparticles for MRI/CT Dual-Mode Imaging. Journal of Nanoparticle Research, 15, 2023.
[9]
Lee, S.-C., Fu, C.-M. and Chang, F.-H. (2013) Effects of Core/Shell Structure on Magnetic Induction Heating Promotion in Fe3O4/γ-Fe2O3 Magnetic Nanoparticles for Hyperthermia. Applied Physics Letters, 103, Article ID: 163104. http://dx.doi.org/10.1063/1.4825270
[10]
Verma, N.K., Crosbie-Staunton, K., Satti, A., Gallagher, S., Ryan, K.B., Doody, T., McAtamney, C., MacLoughlin, R., Galvin, P., Burke, C.S., Volkov, Y. and Gun’ko, Y.K. (2013) Magnetic Core-Shell Nanoparticles for Drug Delivery by Nebulization. Journal of Nanobiotechnology, 11, 1. http://dx.doi.org/10.1186/1477-3155-11-1
[11]
Fajaroh, F., Setyawan, H., Nur, A. and Wuled Lenggoro, I. (2013) Thermal Stability of Silica-Coated Magnetite Nanoparticles Prepared by an Electrochemical Method. Advanced Powder Technology, 24, 507-511. http://dx.doi.org/10.1016/j.apt.2012.09.008
[12]
Moussa, S., Atkinson, G. and Samy El-Shall, M. (2013) Laser-Assisted Synthesis of Magnetic Fe/ Fe2O3 Core: Carbon-Shell Nanoparticles in Organic Solvents. Journal of Nanoparticle Research, 15, 1470.
[13]
Podrepsek, G.H. and Leitgeb, Z.K.M. (2013) Different Preparation Methods and Characterization of Magnetic Coated with Chitosan. Journal of Nanoparticle Research, 15, 1751. http://dx.doi.org/10.1007/s11051-013-1751-x
[14]
Liu, Q.C., Zi, Z.F., Zhang, M., Pang, A., Dai, J.M. and Sun, Y.P. (2013) Enhanced Microwave Absorption Properties of Carbonyl Iron/Fe3O4 Composites Synthetized by a Simple Hydrothermal Method. Journal of Alloys and Compounds, 561, 65-70. http://dx.doi.org/10.1016/j.jallcom.2013.02.007
[15]
Ramos Guivar, J.A., Bustamante, A., Flores, J., Mejía Santillan, M., Osorio, A.M., Martínez, A.I., De Los Santos Valladares, L. and Barnes, C.H. (2014) Mossbauer Study of Intermediate Superparamagnetic Relaxation of Maghemite (γ-Fe2O3) Nanoparticles. Hyperfine Interactions, 224, 89-97. http://dx.doi.org/10.1007/s10751-013-0864-z
[16]
Jiang, W.J., Pelaez, M., Dionysiou, D.D., Entezari, M.H., Tsoutsoud, D. and O’Shea, K. (2013) Chromium (VI) Removal by Maghemite Nanoparticles. Chemical Engineering Journal, 222, 527-533. http://dx.doi.org/10.1016/j.cej.2013.02.049
[17]
Papaefthymou, G.C., Devlin, E., Simopoulos, A., Yi, D.K., Riduan, S.N., Lee, S.S. and Ying, J.Y. (2009) Interparticle Interactions in Magnetic Core/Shell Nanoarchitectures. Physical Review B, 80, Article ID: 024406.
[18]
Hai, H.T., Kura, H., Takahashi, M. and Ogawa, T. (2010) Facile Synthesis of Fe3O4 Nanoparticles by Reduction Phase Transformation from γ-Fe2O3 Nanoparticles in Organic Solvent. Journal of Colloid and Interface Science, 341, 194199. http://dx.doi.org/10.1016/j.jcis.2009.09.041
[19]
Chen, D.X., Sanchez, A., Taboada, E., Roig, A., Sun, N. and Gu, H.C. (2009) Size Determination of Superparamagnetic Nanoparticles from Magnetization Curve. Journal of Applied Physics, 105, Article ID: 083924. http://dx.doi.org/10.1063/1.3117512
[20]
Hyeon, T., Lee, S.S., Park, J., Chung, Y. and Na, H.B. (2001) Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. Journal of the American Chemical Society, 123, 1279812801. http://dx.doi.org/10.1021/ja016812s
[21]
Abbas, M., Takahashi, M. and Kim, C. (2013) Facile Sonochemical Synthesis of High-Moment Magnetite (Fe3O4) Nanocube. Journal of Nanoparticle Research, 15, 1354. http://dx.doi.org/10.1007/s11051-012-1354-y
[22]
Lu, H.M., Zheng, W.T. and Jiang, Q. (2007) Saturation Magnetization of Ferromagnetic and Ferromagnetic Nanocrystals at Room Temperature. Journal of Physics D: Applied Physics, 40, 320-325. http://dx.doi.org/10.1088/0022-3727/40/2/006
[23]
Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley VCH, Hoboken. http://dx.doi.org/10.1002/3527602097
[24]
Coaquira, J.A.H., Vaccari, C.B., Tedesco, A.C. and Morais, P.C. (2009) Magnetic Investigation of CoFe2O4 Nanoparticles Supported in Biocompatible Polymeric Microsphere. IEEE Transactions on Magnetics, 45, 405-40629. http://dx.doi.org/10.1109/TMAG.2009.2026291
[25]
Morup, S., Bodker, F., Hendriksen, P.V. and Linderoth, S. (1995) Spin-Glass-Like Ordering of the Magnetic Moments of Interacting Nanosized Maghemite Particles. Physical Review B, 52, 287.
[26]
Tronc, E., Fiorani, D., Nogues, M., Testa, A.M., Lucari, F., D’Orazio, F., Greneche, J.M., Wernsdorfer, W., Galvez, N., Chanéac, C., Mailly, D. and Jolivet, J.P. (2003) Surface Effects in Noninteracting and Interacting γ-Fe2O3 Nanoparticles. Journal of Magnetism and Magnetic Materials, 262, 6-14. http://dx.doi.org/10.1016/S0304-8853(03)00011-8
[27]
Carpenter, E.E. (2001) Iron Nanoparticles as Potential Magnetic Carriers. Journal of Magnetism and Magnetic Materials, 225, 17-20.