In this work
electromagnetic properties of a new type of graphene nanoparticles are investigated.
The particles consist of graphene circular and square rings, embedded in a dielectric environment. The
electromagnetic behavior in terms of resonant frequency position, magnitude and
amplitude width for the absorption cross-section and the near electric field
distribution are evaluated. Moreover, the influence of the geometrical
parameters is also evaluated. The electromagnetic analysis is derived through
proper full-wave numerical simulations. Numerical results show that the nanoparticles
can be successfully used for the development of future graphene-based antennas
operating in the TeraHertz Band.
References
[1]
Lee, W., Lee, J.U., Jung, B.M., Byun, J.-H., Yi, J.-W., Lee, S.-B. and Kim, B.-S. (2013) Simultaneous Enhancement of Mechanical, Electrical and Thermal Properties of Graphene Oxide Paper by Embedding Dopamine. Carbon, 65, 296-304. http://dx.doi.org/10.1016/j.carbon.2013.08.029
[2]
Liao, L., Lin, Y-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K.L., Huang, Y. and Duan, X. (2010) HighSpeed Graphene Transistors with a Self-Aligned Nanowire Gate. Nature, 467, 305-308. http://dx.doi.org/10.1038/nature09405
[3]
Bi, H., Zhao, W., Sun, S., Cui, H., Lin, T., Huang, F., Xie, X. and Jiang, M. (2013) Graphene Films Decorated with Metal Sulfide Nanoparticles for Use as Counter Electrodes of Dye-Sensitized Solar Cells. Carbon, 61, 116-123. http://dx.doi.org/10.1016/j.carbon.2013.04.075
[4]
Tarparelli, R., Iovine, R., La Spada, L. and Vegni, L. (2014) Surface Plasmon Resonance of Nanoshell Particles with PMMA-Graphene Core. COMPEL, to be Published.
[5]
Gomez-Diaz, J.S. and Perruisseau-Carrier, J. (2012) Microwave to THz properties of Graphene and Potential Antenna Applications. Proceedings of ISAP2012, Nagoya, 29 October-2 November 2012, 1-3.
[6]
Costa, K.Q., Dmitriev, V., Nascimento, C.M. and Silvano, G.L. (2013) Graphene Nanoantennas with Different Shapes. Proceedings on Microwave & Optoelectronics conference (IMOC), 2013 SBMO/IEEE MTT-S International, Rio de Janeiro, 4-7 August 2013, 1-5.
[7]
CST Computer Simulation Technology. www.cst.com
[8]
Yoon, S.-M., Choi, W.M., Baik, H., Shin, H.-J., Song, I., Kwon, M.-S., Bae, J.J., Kim, H, Lee, Y.H. and Choi, J.-Y. (2012) Synthesis of Multilayer Graphene Balls by Carbon Segregation from Nickel Nanoparticles. ACS Nano, 6, 6803-6811. htttp://dx.doi.org/:10.1021/nn301546z
[9]
Hanson, G. (2008) Dyadic Green’s Functions for an Anisotropic, Non-Local Model of Biased Graphene. IEEE Transactions on Antennas and Propagation, 56, 747-757. http://dx.doi.org/10.1109/TAP.2008.917005
[10]
Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J.M., Alarcón, E. and Chigrin, D.N. (2012) Graphene-Based Nano-Patch Antenna for Terahertz Radiation. Photonics and Nanostructures—Fundamental and Applications, 10, 353-358. http://dx.doi.org/10.1016/j.photonics.2012.05.011
[11]
Llatser, I., Kremers, C., Chigrin, D.N., Jornet, J.M., Lemme, M.C., Cabellos-Aparicio, A. and Alarcon, E. (2012) Characterization of Graphene-Based Nano-Antennasin the Terahertz Band. Proceedings on Antennas and Propagation (EUCAP), Prague, 26-30 March 2012, 194-198.