Nacre’s brick and mortar structure has been motivating innovations in biomimetic materials for decades. However, there is still room to improve understanding of the structure of the organic layer in order to engineer better biomimetic composites. A plasma-etching technique that allows for the selective removal of some organic components from individual layers is developed. We conclude that this technique enables a closer examination of the organic layer such that the locations and mechanical properties of individual components can be determined. A methodology for examining nacre samples that have not been demineralized provides a more accurate substrate for understanding the structure-property relationships of the organic layer in native nacre.
References
[1]
Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293. http://dx.doi.org/10.1080/028418501127346846
[2]
Aksay, I., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P. and Gruner, S. (1996) Biomimetic Pathways for Assembling Inorganic Thin Films. Science, 273, 892-898. http://dx.doi.org/10.1126/science.273.5277.892
[3]
Addadi, L. and Weiner, S. (1997) A Pavement of Pearl. Nature, 389, 912-915. http://dx.doi.org/10.1038/40010
[4]
Yao, N., Epstein, A., Liu, W., Sauer, F. and Yang, N. (2009) Organic-Inorganic Interfaces and Spiral Growth in Nacre. Journals of the Royal Society Interface, 6, 367-376. http://dx.doi.org/10.1098/rsif.2008.0316
[5]
Liu, W. and Yao, N. (2008) Characterization of the Organic-Inorganic Interface of Abalone Shell Nacre. Microscopy and Microanalysis Proceedings, 14, 24-25. http://dx.doi.org/10.1017/S143192760808118X
[6]
Meyers, M., Lim, C., Li, A., Nizam, B.H., Tan, E., Seki, Y. and McKittrick, J. (2009) The Role of Organic Intertile Layer in Abalone Nacre. Materials Science and Engineering C, 29, 2398-2410. http://dx.doi.org/10.1016/j.msec.2009.07.005
[7]
Bezares, J., Asaro, R. and Hawley, M. (2010) Macromolecular Structure of the Organic Framework of Nacre in Haliotis rufescens: Implications for Mechanical Response. Journal of Structural Biology, 170, 484-500. http://dx.doi.org/10.1016/j.jsb.2010.01.006
[8]
Katti, K. and Katti, D. (2006) Why is Nacre So Tough and Strong? Materials Science and Engineering C, 26, 1317-1324. http://dx.doi.org/10.1016/j.msec.2005.08.013
[9]
Wise, S. and deVilliers, J. (1971) Scanning Electron Microscopy of Molluscan Shell Ultrastructures: Screw Dislocations in Pelecypod Nacre. Transactions of the American Microscopical Society, 90, 376-380. http://dx.doi.org/10.2307/3225200
[10]
Sumitomo, T., Kakisawa, H., Owaki, Y. and Kagawa, Y. (2008) In Situ Transmission Electron Microscopy Observation of Reversible Deformation in Nacre Organic Matrix. Journal of Material Research, 23, 1466-1471. http://dx.doi.org/10.1557/JMR.2008.0184
[11]
Song, F., Soh, A. and Bai, Y. (2003) Structural and Mechanical Properties of the Organic Matrix Layers of Nacre. Biomaterials, 25, 3623-3631. http://dx.doi.org/10.1016/S0142-9612(03)00215-1
[12]
Levi-Kalisman, Y., Falini, G., Addadi, L. and Weiner, S. (2001) Structure of the Nacreous Organic Matrix of a Bivalve Mollusk Shell Examined in the Hydrated State Using Cryo-TEM. Journal of Structural Biology, 135, 8-17. http://dx.doi.org/10.1006/jsbi.2001.4372
[13]
Metzler, R., Evans, J., Killian, C., Zhou, D., Churchill, T., Appathurai, N., Coppersnith, S. and Gilbert, P. (2010) Nacre Protein Fragment Templates Lamellar Aragonite Growth. Journal of the American Chemical Society, 132, 6329-6334. http://dx.doi.org/10.1021/ja909735y
[14]
Liu, G., Zhao, D., Tomsia, A., Minor, A., Song, X. and Saiz, E. (2009) Three-Dimensional Biomimetic Mineralization of Dense Hydrogel Templates. Journal of the American Chemical Society, 131, 9937-9939. http://dx.doi.org/10.1021/ja903817z
[15]
Barthelat, F., Li, C., Comi, C. and Espinosa, H. (2006) Mechanical Properties of Nacre Constituents and their Impact on Mechanical Performance. Journal of Materials Research, 21, 1977-1986. http://dx.doi.org/10.1557/jmr.2006.0239
[16]
Dastjerdi, A.K., et al. (2012) The Weak Interfaces Within Tough Natural Composites: Experiments on Three Types of Nacre. Journal of the Mechanical Behavior of Biomedical Materials, 19, 50-60. http://dx.doi.org/10.1016/j.jmbbm.2012.09.004
[17]
Kingsley, R., Gilder, R., LeGeros, R. and Watabe, N. (2003) Multimineral Calcareous Deposits in the Marine Alga Acetabularia Acetabulum (Chlorophyta; Dasycladaceae). Journal of Phycology, 39, 937-947. http://dx.doi.org/10.1046/j.1529-8817.2003.02169.x
[18]
Wang, R., Evans, A., Suo, Z., Yao, N. and Aksay, I. (2001) Deformation Mechanisms in Nacre. Journal of Material Research, 16, 2485-2493. http://dx.doi.org/10.1557/JMR.2001.0340
[19]
Egitto, F. (1990) Plasma Etching and Modification of Organic Polymers. Pure and Applied Chemistry, 62, 1699-1708. http://dx.doi.org/10.1351/pac199062091699
[20]
Chu, P., Chen, J., Wang, L. and Huang, N. (2002) Plasma-Surface Modification of Biomaterials. Materials Science and Engineering R, 36, 143-206. http://dx.doi.org/10.1557/JMR.2001.0340
[21]
Blank, S., Arnoldi, M., Khoshnavaz, S., Treccani, L., Kuntz, M., Mann, K. and Grathwohl, G. (2003) The Nacre Protein Perlucin Nuceates Growth of Calcium Carbonate Crystals. Journal of Microscopy, 212, 280-291. http://dx.doi.org/10.1111/j.1365-2818.2003.01263.x
[22]
Schaffer, T., Ionescu-Zaneeti, C., Proksch, R., Fritz, M., Walters, D., Almqvist, N., Zaremba, C., Belcher, A., Smith, B., Stucky, G., Morse, D. and Hansma, P. (1997) Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth Through Mineral Bridges? Chemistry of Materials, 9, 1731-1740. http://dx.doi.org/10.1021/cm960429i