全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lie Symmetries, 1-Dimensional Optimal System and Optimal Reductions of (1 + 2)-Dimensional Nonlinear Schrödinger Equation

DOI: 10.4236/jamp.2014.27067, PP. 603-620

Keywords: Nonlinear Schrödinger Equation, Classical Symmetry, Optimal System, Symmetry Reductions, Invariant Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a class of (1 + 2)-dimensional nonlinear Schrodinger equations, classical symmetry algebra is found and 1-dimensional optimal system, up to conjugacy, is constructed. Its symmetry reductions are performed for each class, and someexamples of exact invainvariant solutions are given.

References

[1]  Tajiri, M. (1983) Similarity Reductions of the One and Two Dimensional Nonlinear Schrodinger Equations. Journal of the Physical Society of Japan, 52, 1908-1917. http://dx.doi.org/10.1143/JPSJ.52.1908
[2]  Drazin, P.G. and Johnson, R.S. (1989) Solitons: An Introduction. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9781139172059
[3]  Kanth, A.S.V. and Aruna, K. (2009) Two-Dimensional Differential Transform Method for Solving Linear and NonLinear Schroedinger Equations. Chaos, Solitons & Fractals, 41, 2277-2281.
http://dx.doi.org/10.1016/j.chaos.2008.08.037
[4]  Biswas, A. (2009) 1-Soliton Solution of 1+ 2 Dimensional Nonlinear Schrodinger’s Equation in Power Law Media. Communications in Nonlinear Science and Numerical Simulation, 14, 1830-1833.
http://dx.doi.org/10.1016/j.cnsns.2008.08.003
[5]  Wazwaz, A.M. (2006) Reliable Analysis for Nonlinear Schrodinger Equations with a Cubic Nonlinearity and a Power Law Nonlinearity. Mathematical and Computer Modelling, 43, 178-184.
http://dx.doi.org/10.1016/j.mcm.2005.06.013
[6]  Zhang, L.H. and Si, J.G. (2010) New Soliton and Periodic Solutions of (1 + 2)-Dimensional Nonlinear Schrodinger Equation with Dual-Power Law Nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 15, 2747-2754. http://dx.doi.org/10.1016/j.cnsns.2009.10.028
[7]  Hydon, P.E. (2000) Symmetry Methods for Differential Equation. Cambridge University Press, Cambridge.
[8]  Bluman, G.W. and Kumei, S. (1991) Symmetries and Differential Equations. Springer-Verlag, Weinheim.
[9]  Chaolu, T. and Jing, P. (2010) An Algorithm for the Completes Symmetry Classification of Differential Equations Based on Wu’s Method. Journal of Engineering Mathematics, 66, 181-199.
http://dx.doi.org/10.1007/s10665-009-9344-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133