全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Proving and Extending Greub-Reinboldt Inequality Using the Two Nonzero Component Lemma

DOI: 10.4236/alamt.2014.42010, PP. 120-127

Keywords: Greub-Reinboldt Inequality, Two Nonzero Component Lemma

Full-Text   Cite this paper   Add to My Lib

Abstract:

We will use the author’s Two Nonzero Component Lemma to give a new proof for the Greub-Reinboldt Inequality. This method has the advantage of showing exactly when the inequality becomes equality. It also provides information about vectors for which the inequality becomes equality. Furthermore, using the Two Nonzero Component Lemma, we will generalize Greub-Reinboldt Inequality to operators on infinite dimensional separable Hilbert spaces.

References

[1]  Gustafson, K. (2001) Forty Years of Antieigenvalue Theory and Applications. Numerical Linear Algebra with Applications, 01, 1-10.
[2]  Kantorovich, L. (1948) Functional Analysis and Applied Mathematics. Uspekhi Matematicheskikh Nauk, 3, 89-185.
[3]  Gustafson, K. and Rao, D. (1997) Numerical Range. Springer, Berlin. http://dx.doi.org/10.1007/978-1-4613-8498-4
[4]  Gustafson, K. and Seddighin, M. (1989) Antieigenvalue Bounds. Journal of Mathematical Analysis and Applications, 143, 327-340. http://dx.doi.org/10.1016/0022-247X(89)90044-9
[5]  Seddighin, M. (2002) Antieigenvalues and Total Antieigenvalues of Normal Operators. Journal of Mathematical Analysis and Applications, 274, 239-254. http://dx.doi.org/10.1016/S0022-247X(02)00295-0
[6]  Seddighin, M. (2009) Antieigenvalue Techniques in Statistics. Linear Algebra and Its Applications, 430, 2566-2580.
http://dx.doi.org/10.1016/j.laa.2008.05.007
[7]  Watson, G.S. (1955) Serial Correlation in Regression Analysis I. Biometrika, 42, 327-342.
http://dx.doi.org/10.1093/biomet/42.3-4.327
[8]  Greub, W. and Rheinboldt, W. (1959) On a Generalisation of an Inequality of L.V. Kantorovich. Proceedings of the American Mathematical Society, 10, 407-415. http://dx.doi.org/10.1090/S0002-9939-1959-0105028-3
[9]  Gustafson, K. (2004) Interaction Antieigenvalues. Journal of Mathematical Analysis and Applications, 299, 179-185.
http://dx.doi.org/10.1016/j.jmaa.2004.06.012
[10]  Seddighin, M. and Gustafson, K. (2005) On the Eigenvalues Which Express Antieigenvalues. International Journal of Mathematics and Mathematical Sciences, 2005, 1543-1554.
http://dx.doi.org/10.1155/IJMMS.2005.1543
[11]  Gustafson, K. and Seddighin, M. (2010) Slant Antieigenvalues and Slant Antieigenvectors of Operators. Journal of Linear Algebra and Applications, 432, 1348-1362. http://dx.doi.org/10.1016/j.laa.2009.11.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133