Carbon doped titanium dioxide (C-TiO2) is considered as a promising photocatalytic material due to its optical absorption extended in the visible region compared to pure TiO2. However, in the field of photovoltaic’s, use of C-doped nano-crystalline titanium dioxide (C-TiO2) electrodes for light absorption has been considered to be unnecessary so far. In this context, we report here on the use of C-TiO2 nano-crystalline electrodes in photochemical solar cells devices (PCSC). Carbon doping has reduced the band gap of TiO2 to 2.41 eV and 2.25 eV with increase in the doping extent for the 9 mM C-TiO2 and 45 mM C-TiO2 respectively. The C-TiO2 electrodes were first used as photo electrodes for solar cells, exhibiting JSC of 1.34651 mA/cm2, VOC 0.683 V, FF 50.23% and η 0.46%. for the 9 mM C-TiO2
References
[1]
Markowska-Szczupak, A., Ulfig, K. and Morawski, A.W. (2011) The Application of Titanium Dioxide for Deactivation of Bioparticulates: An Overview. Catalysis Today, 169, 249-257.
[2]
Sanchez, M. and Rincon, M.E. (2012) Effect of Multiwalled Carbon Nanotube Functionalization on the Gas Sensing Properties of Carbon Nanotube-Titanium Dioxide Hybrid Materials. Diamond & Related Materials, 21, 1-6. http://dx.doi.org/10.1016/j.diamond.2011.09.010
[3]
Ban, Y.X. and Wang, X.C. (2011) Features and Application of Titanium Dioxide Thin Films in Water Treatment. Procedia Engineering, 24, 663-666. http://dx.doi.org/10.1016/j.proeng.2011.11.2714
[4]
Chu, D.B., Yuan, X.M., Qin, G.X., Xu, M., Zheng, P., Lu, J. and Zha, L.W. (2008) Efficient Carbon-Doped Nanostructured TiO2 (Anatase) Film for Photoelectrochemical Solar Cells. Journal of Nanoparticle Research, 10, 357-363. http://dx.doi.org/10.1007/s11051-007-9241-7
[5]
Im, J.S., Yun, J., Lee, S.K. and Lee, Y.-S. (2012) Journal of Alloys and Compounds, 513, 573-579.
[6]
Xie, Y.N., Hung, N., Liu, Y.M., Sun, W.W., Mehanane, H.F., You, S.J., Wang, L.Y., Liu, W., Guo, S.S. and Zhao, X.Z. (2013) Photoelectrodes Modification by N Doping for Dye-Sensitized Solar Cells. Electrochimica Acta, 93, 202-206. http://dx.doi.org/10.1016/j.electacta.2013.01.091
[7]
Melhem, H., Simon, P., Wang, J., Di Bin, C., Ratier, B., Leconte, Y., Herlin-Boime, N., Makowska-Janusik, M., Kassiba, A. and Boucle, J. (2012) Direct Photocurrent Generation from Nitrogen Doped TiO2 Electrodes in Solid-State Dye-Sensitized Solar Cells: Towards Optically-Active Metal Oxides for Photovoltaic Applications. Solar Energy Materials & Solar Cells, 117, 624-631.
[8]
Murayama, M. and Mori, T.T. (2008) Novel Tandem Cell Structure of Dye-Sensitized Solar Cell for Improvement in Photocurrent. Thin Solid Films, 516, 2716-2722. http://dx.doi.org/10.1016/j.tsf.2007.04.076
[9]
Nosaka, Y. (2011) Comprehensive Nanoscience and Technology. Solar Cells and Photo Catalysis, 1, 571-605.
[10]
Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbana, G.N. and Madras, G. (2004) Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity. Langmuir, 20, 2900-2907. http://dx.doi.org/10.1021/la035777v
Lee, H.U., Lee, S.C., Choi, S., Son, B., Lee, S.M. and Lee, H.J.K.J. (2013) Efficient Visible-Light Induced Photocatalysis on Nanoporous Nitrogen-Doped Titanium Dioxide Catalysts. Chemical Engineering Journal, 228, 756-764. http://dx.doi.org/10.1016/j.cej.2013.05.059
[13]
Yella, A., Lee, H.W., Tsao, H.N., Yi, C., Chandiran, A.K., Diau, E.W., Yeh, C.Y., Zakeerudin, S.M. and Gratzel, M. (2011) Porphyrin Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 85, 1172-1178.
[14]
Gratzel, M. (2004) Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 164, 3-7. http://dx.doi.org/10.1016/j.jphotochem.2004.02.023
[15]
Gratzel, M. (2005) Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 44, 20-25. http://dx.doi.org/10.1021/ic0508371
[16]
Kubo, W., Sakamoto, A., Wada, T.K.Y. and Yanagida, S. (2004) Dye Sensitized Solar Cells Improvement by Tandem Structure. Journal of Photochemistry and Photobiology A: Chemistry, 164, 33-39. http://dx.doi.org/10.1016/j.jphotochem.2004.01.024
[17]
Qin, C.J., Islam, A. and Han, L.Y. (2012) Panchromatic Donor-Acceptor-Acceptor Sensitizers Based on 4H-Cyclopenta[2,1-b:3,4-b’]Dithiophen-4-One as a Strong Acceptor for Dye-Sensitized Solar Cells. Dyes and Pigments, 94, 553-556. http://dx.doi.org/10.1016/j.dyepig.2012.03.002
[18]
Bozic-Weber, B., Edwin, C.C. and Housecroft, C.E. (2013) Light Harvesting with Earth Abundant d-Block Metals: Development of Sensitizers in Dye-Sensitized Solar Cells (DSCs). Coordination Chemistry Reviews, 257, 3089-3106. http://dx.doi.org/10.1016/j.ccr.2013.05.019
[19]
Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95, 69-96. http://dx.doi.org/10.1021/cr00033a004
[20]
Guo, W., Shen, Y.H., Boschloo, G., Hagfield, A. and Ma, T. (2011) Influence of Nitrogen Dopants on N Doped TiO2 Electrode and Their Applications in Dye Sensitized Solar Cells. Electrochemica Acta, 56, 4611-4617. http://dx.doi.org/10.1016/j.electacta.2011.02.091
[21]
Castro, A.L., Nune, M.R., Carvalho, M.D., Ferreira, L.P., Jumas, J.C., et al. (2009) Doped Titanium Dioxide Nanocrystalline Powders with High Photocatalytic Activity. Journal of Solid State Chemistry, 182, 1838-1845. http://dx.doi.org/10.1016/j.jssc.2009.04.020
[22]
Djerdji, I., Acron, D., Jaglicic, Z. and Niederberger, M. (2008) Nonaqueous Synthesis of Metal Oxide Nanoparticles: Short Review and Doped Titanium Dioxide as Case Study for the Preparation of Transition Metal-Doped Oxide Nanoparticles. Journal of Solid State Chemistry, 181, 1571-1581. http://dx.doi.org/10.1016/j.jssc.2008.04.016