Maltose-pendant
polymer/mica nanocomposites were prepared by a solution intercalation method.
For organic composite part, 1) maltose-pendant polymer (homopolymer) and 2) the
copolymer of maltose-pendant monomer and a small amount of N,N-Dimethylamino propylacrylamide,
methyl chloride quartenary were used. The morphological studies (XRD and
FE-SEM) revealed that the hybrid of maltose-pendant polymer was a conventional
phase separated composite. On the other hand, the hybrid using the copolymer
exhibited exfoliated structure. Both the conventional composite of
maltose-pendant polymer and the nanocomposite of copolymer were applied to a
coating material for oxygen gas barrier layer on a nylon-6 film, and oxygen
transmission rates of the films were evaluated. Maltose-pendant polymer had a
good oxygen barrier property under dry condition, and the barrier property
under wet condition was improved by the hybridization with mica. In contrast,
the barrier property of copolymer was slightly inferior to that of maltosependant
polymer. However, under dry condition, it can be seen that the nanocomposite of
copolymer improves the barrier property more effectively than the case of
conventional composite of maltose-pendant polymer.
References
[1]
Park, H.-M. and Ha, C.-S. (2009) Barrier Properties of Biodegradable Nanocomposites. In: Mittal, V., Ed., Barrier Properties of Polymer Clay Nanocomposites, Nova Science Publishers, Inc., New York, 231-256.
[2]
Satoh, T., Nagaoka, S., Sakurai, T., Takafuji, M. and Ihara, H. (2005) Preparation of Spherical Nano Particles Using Novel Oligosaccharide Pendant Polymers and Their Characterization. Transactions of the MRS-Japan, 30, 1139-1142.
[3]
Satoh, T., Nagaoka, S. and Ihara, H. (2005) Self-Assembled Nanoparticles from Oligosaccharide-Pendant Amphiphilic Polymers. Proceeding of the 8th International Symposium on Polymers for Advanced Technologies, Budapest, 13-16 September 2005.
[4]
Park, H.-M., Lee, W.-K., Park, C.-Y., Cho, W.-J. and Ha, C.-S. (2003) Environmentally Friendly Polymer Hybrids. Part I Mechanical, Thermal, and Barrier Properties of Thermoplastic Starch/Clay Nanocomposites. Journal of Materials Science, 38, 909-915. http://dx.doi.org/10.1023/A:1022308705231
[5]
Park, H.-M., Misra, M., Drzal, L.T. and Mohanty, A.K. (2004) “Green” Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Eco-Friendly Triethyl Citrate Plasticizer. Biomacromolecules, 5, 2281-2288. http://dx.doi.org/10.1021/bm049690f
[6]
Ray, S.S., Yamada, K., Okamoto, M., Ogami, A. and Ueda, K. (2003) New Polylactide/Layered Silicate Nanocomposites. 3. High-Performance Biodegradable Materials. Chemistry of Materials, 15, 1456-1465. http://dx.doi.org/10.1021/cm020953r
[7]
Cabedo, L., Feijoo, J.L., Villanueva, M.P., Lagarón, J.M. and Giménez, E. (2006) Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233, 191-197. http://dx.doi.org/10.1002/masy.200690017
[8]
Messersmith, P.B. and Giannelis, E.P. (1995) Synthesis and Barrier Properties of Poly(ε-Caprolactone)-Layered Silicate Nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry, 33, 1047-1057. http://dx.doi.org/10.1002/pola.1995.080330707
[9]
Gorrasi, G., Tortora, M., Vittoria, V., Pollet, E., Lepoittevin, B., Alexandre, M. and Dubois, P. (2003) Vapor Barrier Properties of Polycaprolactone Montmorillonite Nanocomposites: Effect of Clay Dispersion. Polymer, 44, 2271-2279. http://dx.doi.org/10.1016/S0032-3861(03)00108-3
[10]
Gorrasi, G., Tortora, M., Vittoria, V., Pollet, E., Alexadre, M. and Dubois, P. (2004) Physical Properties of Poly(ε-Caprolactone) Layered Silicate Nanocomposites Prepared by Controlled Grafting Polymerization. Journal of Polymer Science Part B: Polymer Physics, 42, 1466-1475. http://dx.doi.org/10.1002/polb.20042
[11]
Xu, R., Manias, E., Snyder, A.J. and Runt, J. (2001) New Biomedical Poly(Urethane Urea)-Layered Silicate Nanocomposites. Macromolecules, 34, 337-339. http://dx.doi.org/10.1021/ma0013657
[12]
Osman, M.A., Mittal, V., Morbidelli, M. and Suter, U.W. (2003) Polyurethane Adhesive Nanocomposites as Gas Permeation Barrier. Macromolecules, 36, 9851-9858. http://dx.doi.org/10.1021/ma035077x
[13]
Yano, K., Usuki, A., Okada, A., Kurauchi, T. and Kamigaito, O. (1993) Synthesis and Properties of Polyimide-Clay Hybrid. Journal of Polymer Science Part A: Polymer Chemistry, 31, 2493-2498. http://dx.doi.org/10.1002/pola.1993.080311009
[14]
Pavlidou, S. and Papaspyrides, C.D. (2008) A Review on Polymer-Layered Silicate Nanocomposites. Progress in Polymer Science, 33, 1119-1198. http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008
[15]
Cussler, E.L., Hughes, S.E., Ward III, W.J. and Aris, R. (1988) Barrier Membranes. Journal of Membrane Science, 38, 161-174. http://dx.doi.org/10.1016/S0376-7388(00)80877-7
[16]
Khanna, Y.P., Day, E.D., Tsai, M.L. and Vaidyanathan, G. (1997) Re-Examining the Oxygen Barrier of Nylon 6 Films. I. Role of Moisture and Processing Induced Variables. Journal of Plastic Film and Sheeting, 13, 197-211.