We analyze in the framework of the space group theory the change of the dispersion law in grapenein and the vicinity of the (former) Dirac points due to application of supercell potential with the space priodicity and the same point symmetry as graphene.
References
[1]
Uchoa, B., Lin, C.-Y. and Castro Neto, A.H. (2008) Tailoring Graphene with Metals on Top. Physical Review B, 77, Article ID: 035420.
[2]
Giovannetti, G., Khomyakov, P.A., Brocks, G.V., Karpan, M., van den Brink, J. and Kelly, P.J. (2008) Doping Graphene with Metal Contacts. Physical Review Letters, 101, Article ID: 026803.
[3]
Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K. and Novoselov, K.S. (2009) Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphene. Science, 323, 610-613. http://dx.doi.org/10.1126/science.1167130
[4]
Chen, J.-H., Jang, C., Adam, S., Fuhrer, M.S., Williams, E.D. and Ishigami, M. (2008) Charged-Impurity Scattering in Graphene. Nature Physics, 4, 377-381. http://dx.doi.org/10.1038/nphys935
[5]
Zhou, S.Y., Siegel, D.A., Fedorov, A.V. and Lanzara, A., (2008) Metal to Insulator Transition in Epitaxial Graphene Induced by Molecular Doping. Physical Review Letters, 101, Article ID: 086402.
http://dx.doi.org/10.1103/PhysRevLett.101.086402
[6]
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. and Novoselov, K.S. (2013) Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Materials, 6, 652-655.
http://dx.doi.org/10.1038/nmat1967
[7]
Lamoen, D. and Persson, B.N.J. (1998) Adsorption of Potassium and Oxygen on Graphite: A Theoretical Study. Journal of Chemical Physics, 108, 3332-3341. http://dx.doi.org/10.1063/1.475732
[8]
Vasseur, G., Fagot-Revurat, Y., Kierren, B., Sicot, M. and Malterre, D. (2013) Effect of Symmetry Breaking on Electronic Band Structure: Gap Opening at the High Symmetry Points. Symmetry, 5, 344-354.
http://dx.doi.org/10.3390/sym5040344
[9]
Farjam, M. and Rafii-Tabar, H. (2009) Energy Gap Opening in Submonolayer Lithium on Graphene: Local Density Functional and Tight-Binding Calculations. Physical Review B, 79, Article ID: 045417.
[10]
Kogan, E. and Nazarov, V.U. (2012) Symmetry Classification of Energy Bands in Graphene. Physical Review B, 85, Article ID: 115418. http://dx.doi.org/10.1103/PhysRevB.85.115418
[11]
Kogan, E. (2013) Symmetry Classification of Energy Bands in Graphene and Silicene. Graphene, 2, 74-80.
http://dx.doi.org/10.4236/graphene.2013.22011
[12]
Kogan, E., Nazarov, V.U., Silkin, V.M. and Kaveh, M. (2013) Energy Bands in Graphene: How good Is the Tight- Binding Model? Physical Review B (Submitted for Publication).
[13]
Bradley, C.J. and Cracknell, A.P. (1972) The Mathematical Theory of Symmetry in Solids. Clarendon Press, Oxford.
[14]
Aroyo, M.I., Capillas, C., De la Flor, G., Kirov, A.K., Orobengoa, D., Perez-Mato, J. and Wondraschek, H. (2010) Representations of Cristallographic Groups.
http://www.crystallography.fr/mathcryst/pdf/nancy2010/Aroyo_reps2010.pdf
[15]
Cheianov, V.V., Falko, V.I., Syljyuasen, O. and Altshuler, B.L. (2009) Hidden Kekulé Ordering of Adatoms on Graphene. Solid State Communications, 149, 1499-1501. http://dx.doi.org/10.1016/j.ssc.2009.07.008
[16]
Landau, L.D. and Lifshitz, E.M. (1991) Landau and Lissitz: Course of Theoretical Physics on Quantum Mechanics. Pergamon Press, Oxford.
[17]
Lifshitz, E.M. and Pitaevskii, L.P. (1979) Landau and Lissitz: Course of Theoretical Physics on Statistical Physics. Pergamon Press, Oxford.