Tropaeolum majus L. is widely known as a medicinal plant in human medicine. It belongs to the Tropaeolaceae which contains mustard oil glycosides like cruciferous plants. In the case of T. majus, the intact glucosinolate glucotropaeolin showed no biological activity, but their degradation products, the isothiocyanates, did. The substances are thought to be enriched in the urinary bladder and the lungs, the active sites to develop their antimicrobial effectiveness. In animal nutrition these effects are of interest in sow management and piglet rearing. Therefore, the kinetics of benzyl-isothiocyanat (BITC) in plasma and the excretion with pig urine in response to nasturtium supplementation at different dosing regimens and galenic forms were examined. Four different groups with catheterized pigs were studied. The animals received the T. majus in different dosages (2.3, 6.9 and 13.4 mg GTL/kg BW) and different galenic forms (enteric coated tablets, pulverized tablets and powder) admixed to the feed ration as single bolus to the morning feeding. Blood and urine samples were collected within 24 h after nasturtium intake and analyzed for free BITC. The results indicated that the enteric coating was not effective in animal feeding. The concentration of BITC in tablet fed pigs was lower compared to animals fed powder or pulverized tablets. The bio-availability of the tablets was only 45% within 24 h relative to pulverized tablets. Nevertheless, the tablets could have some advantages in terms of the handling, the stability of the active substance and the dosing. Furthermore, it could be shown that all dosages yielded concentrations in urine and plasma, which can be considered to have an antimicrobial effect.
References
[1]
(1985) Anonymous, Scientific Elaboration of Tropaeolum Maius (majus) l. (“in German”). Kooperation Phytopharmaka—Working Group Efficiancy Treatment of Scientific Data Concerning Efficacy, Safety, Quality, Toxicology and Clinic, Bonn, Germany.
[2]
Fahey, J.W., Zalcmann, A.T. and Talalay, P. (2001) The Chemical Diversity and Distribution of Glucosinolates and Isothiocyanates among Plants. Phytochemistry, 56, 5-51. http://dx.doi.org/10.1016/S0031-9422(00)00316-2
[3]
Vermeulen, M., van den Berg, R., Freidig, A.P., van Bladeren, P.J. and Vaes, W.H.J. (2006) Association between Consumption of Cruciferous Vegetables and Condiments and Excretion in Urine of Isothiocyanate Mercapturic Acids. Journal of Agricultural and Food Chemistry, 54, 5350-5358. http://dx.doi.org/10.1021/jf060723n
[4]
Kumar, A. and Sabbioni, G. (2010) New Biomarkers for Monitoring the Levels of Isothiocyanates in Humans. Chemical Research in Toxicology, 23, 756-765. http://dx.doi.org/10.1021/tx900393t
[5]
Pintão, A.M., Pais, M.S., Coley, H., Kelland, L.R. and Judson, I.R. (1995) In Vitro and in Vivo Antitumor Activity of Benzyl Isothiocyanate: A Natural Product from Tropaeolum Majus. Planta Medica, 61, 233-236. http://dx.doi.org/10.1055/s-2006-958062
[6]
Shapiro, T.A., Fahey, J.W., Wade, K.L., Stephenson, K.K. and Talalay, P. (2001) Chemoprotective Glucosinolates and Isothiocyanates of Broccoli Sprouts. Cancer Epidemiology Biomarkers & Prevention, 10, 501-508.
[7]
Bazylko, A., Granica, S., Filipek, A., Piwowarski, J., Stefańska, J., Osińska, E. and Kiss, A.K. (2013) Comparison of Antioxidant, Anti-Inflammatory, Antimicrobial Activity and Chemical Composition of Aqueous and Hydroethanolic Extracts of the Herb of Tropaeolum Majus l. Industrial Crops and Products, 50, 88-94. http://dx.doi.org/10.1016/j.indcrop.2013.07.003
[8]
Halbeisen, T. (1954) Untersuchungen über die antibiotischen Wirkstoffe von Tropaeolum majus (Kapuzinerkresse). Naturwissenschaften, 41, 378-379. http://dx.doi.org/10.1007/BF00684067
[9]
Gasparotto Junior, A., Prando, T.B.L., Leme, T.D.S.V., Gasparotto, F.M., Lourenço, E.L.B., Rattmann, Y.D., Da Silva-Santos, J.E., Kassuya, C.A.L. and Marques, M.C.A. (2012) Mechanisms Underlying the Diuretic Effects of Tropaeolum Majus l. Extracts and Its Main Component Isoquercitrin. Journal of Ethnopharmacology, 141, 501-509. http://dx.doi.org/10.1016/j.jep.2012.03.018
[10]
Winter, A. and Rings-Willeke, L. (1958) Untersuchungen über den Einfluss von Senfölen auf die Vermehrung des Influenza-Virus im exembryonierten Hühnerei. Archiv für Mikrobiologie, 31, 311-318. http://dx.doi.org/10.1007/BF00409992
[11]
Boeger, O., Westerhoff, W. and Winter, A.G. (1955) Untersuchungen über Antibiotika aus höheren Pflanzen. Schweinemastversuche mit den antimikrobischen Wirkstoffen der Kapuzinerkresse. Naturwissenschaften, 42, 464-464. http://dx.doi.org/10.1007/BF00634082
[12]
Reeth, K.V. and Nauwynck, H. (2000) Proinflammatory Cytokines and Viral Respiratory Disease in Pigs. Veterinary Research, 31, 187-213. http://dx.doi.org/10.1051/vetres:2000113
[13]
Martineau, G.P., Smith, B.B. and Doize, B. (1992) Pathogenesis, Prevention, and Treatment of Lactational Insufficiency in Sows. Veterinary Clinics of North America: Food Animal Practice, 8, 661-684.
[14]
Winter, A.G. (1954) Hemmstoffkonzentrationen im urin nach aufnahme von salat bzw. Wirkstoffanreicherungen (tromalyt) der kapuzinerkresse. Naturwissenschaften, 41, 379-380. http://dx.doi.org/10.1007/BF00684068
[15]
Bergmann, M., Lipsky, H. and Glawogger, F. (1966) Ein Antibiotikum aus der Kapuzinerkresse bei Harnwegsinfektionen. Medizinische Klinik, 61, 1469-1472.
[16]
Gerjets, I. and Kemper, N. (2009) Coliform Mastitis in Sows: A Review. Journal of Swine Health and Production, 17, 97-105.
[17]
Goyarts, T. and Dänicke, S. (2006) Bioavailability of the Fusarium Toxin Deoxynivalenol (DON) from Naturally Contaminated Wheat for the Pig. Toxicology Letters, 163, 171-182. http://dx.doi.org/10.1016/j.toxlet.2005.10.007
[18]
GfE (2006) Society of Nutrition Physiology, Recommendations for the Supply of Energy and Nutrients to Pigs. Energy and Nutrients Requirements for Livestock. DLG-Verlags GmbH, Committee for Requirement Standards of the Society of Nutrition Physiology, Frankfurt am Main.
[19]
Blumenthal, M., Busse, W.R., Goldberg, A., Gruenwald, J., Hall, T., Riggins, C.W. and Rister, R.S. (1998) The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines. American Botanical Council, Austin.
[20]
Naumann, C. and Bassler, R. (1993) Die chemische Untersuchung von Futtermitteln. VDLUFA-Verlag.
[21]
Anonymous (1990) Bestimmung des Glucosinolatgehaltes von Oelsaaten durch HPLC. EU Methode Nr. L170/28.
[22]
Ye, L., Dinkova-Kostova, A.T., Wade, K.L., Zhang, Y., Shapiro, T.A. and Talalay, P. (2002) Quantitative Determination of Dithiocarbamates in Human Plasma, Serum, Erythrocytes and Urine: Pharmacokinetics of Broccoli Sprout Isothiocyanates in Humans. Clinica Chimica Acta, 316, 43-53. http://dx.doi.org/10.1016/S0009-8981(01)00727-6
[23]
Mercer, L.P., May, H.E. and Dodds, S.J. (1989) The Determination of Nutritional Requirements in Rats: Mathematical Modeling of Sigmoidal, Inhibited Nutrient-Response Curves. Journal of Nutrition, 119, 1465-1471.
[24]
Brüsewitz, G., Cameron, B.D., Chasseaud, L.F., Gorler, K., Hawkins, D.R., Koch, H. and Mennike, W.H. (1977) The Metabolism of Benzyl Isothiocyanate and Its Cysteine Conjugate. Biochemical Journal, 162, 99-107.
[25]
Lamy, E., Scholtes, C., Herz, C. and Mersch-Sundermann, V. (2011) Pharmacokinetics and Pharmacodynamics of Isothiocyanates. Drug Metabolism Reviews, 43, 387-407. http://dx.doi.org/10.3109/03602532.2011.569551
[26]
Platz, S., Kuhn, C., Schiess, S., Schreiner, M., Mewis, I., Kemper, M., Pfeiffer, A. and Rohn, S. (2013) Determination of Benzyl Isothiocyanate Metabolites in Human Plasma and Urine by LC-ESI-MS/MS after Ingestion of Nasturtium (Tropaeolum majus L.). Analytical and Bioanalytical Chemistry, 405, 7427-7436. http://dx.doi.org/10.1007/s00216-013-7176-7
[27]
Zhang, Y.S., Kolm, R.H., Mannervik, B. and Talalay, P. (1995) Reversible Conjugation of Isothiocyanates with Glutathione Catalyzed by Human Glutathione Transferases. Biochemical and Biophysical Research Communications, 206, 748-755. http://dx.doi.org/10.1006/bbrc.1995.1106
[28]
Bollard, M., Stribbling, S., Mitchell, S. and Caldwell, J. (1997) The Disposition of Allyl Isothiocyanate in the Rat and Mouse. Food and Chemical Toxicology, 35, 933-943. http://dx.doi.org/10.1016/S0278-6915(97)00103-8
[29]
Shapiro, T.A., Fahey, J.W., Wade, K.L., Stephenson, K.K. and Talalay, P. (1998) Human Metabolism and Excretion of Cancer Chemoprotective Glucosinolates and Isothiocyanates of Cruciferous Vegetables. Cancer Epidemiology Biomarkers & Prevention, 7, 1091-1100.
[30]
Shapiro, T.A., Fahey, J.W., Dinkova-Kostova, A.T., Holtzclaw, W.D., Stephenson, K.K., Wade, K.L., Ye, L. and Talalay, P. (2006) Safety, Tolerance, and Metabolism of Broccoli Sprout Glucosinolates and Isothiocyanates: A Clinical Phase I Study. Nutrition and Cancer, 55, 53-62. http://dx.doi.org/10.1207/s15327914nc5501_7
[31]
Bloem, E., Haneklaus, S. and Schnug, E. (2007) Comparative Effects of Sulfur and Nitrogen Fertilization and Post-Harvest Processing Parameters on the Glucotropaeolin Content of Tropaeolum majus L. Journal of the Science of Food and Agriculture, 87, 1576-1585. http://dx.doi.org/10.1002/jsfa.2895
[32]
Bloem, E., Berk, A., Haneklaus, S., Selmar, D. and Schnug, E. (2008) Influence of Tropaeolum Majus Supplements on Growth and Antimicrobial Capacity of Glucotropaeolin in Piglets. Agriculture and Forestry Research, 58, 203-210.
[33]
Gil, V. and MacLeod, A.J. (1980) The Effects of pH on Glucosinolate Degradation by a Thioglucoside Glucohydrolase Preparation. Phytochemistry, 19, 2547-2551. http://dx.doi.org/10.1016/S0031-9422(00)83916-3
[34]
Halkier, B.A. and Gershenzon, J. (2006) Biology and Biochemistry of Glucosinolates. Annual Review of Plant Biology, 57, 303-333. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105228