全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Structure of Infinitesimal Automorphisms of the Poisson-Lie Group SU(2,R)

DOI: 10.4236/apm.2014.44015, PP. 93-97

Keywords: Poisson-Lie Structure, Lie Bialgebra, Hamiltonian, Poisson Automorphism, Linearization

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the Poisson-Lie structures on the group SU(2,R). We calculate all Poisson-Lie structures on SU(2,R) through the correspondence with Lie bialgebra structures on its Lie algebra su(2,R). We show that all these structures are linearizable in the neighborhood of the unity of the group SU(2,R). Finally, we show that the Lie algebra consisting of all infinitesimal automorphisms is strictly contained in the Lie algebra consisting of Hamiltonian vector fields.

References

[1]  Drinfeld’s, V.G. (1983) Hamiltonian Structures on Lie Groups, Lie Bialgebras and the Geometric Meaning of the Classical Yang-Baxter Equations. Soviet Mathematics—Doklady, 27, 68-71.
[2]  Drinfeld, V.G. (1986) Quantum Groups, Proceedings of the International Congress of Mathematicians, Berkley, 3-11 August 1986, 789-820.
[3]  Lu, J.H. and Weinstein, A. (1990) Poisson-Lie Group, Dressing Transformaions and Bruhat Decomposition. Journal of Differential Geometry, 31, 301-599.
[4]  Semenove-Tian-Shasky, M.A. (1983) What Is a Classical r-Matrix. Functional Analysis and Its Applications, 17, 259-272. http://dx.doi.org/10.1007/BF01076717
[5]  Chari, V. and Pressley, A. (1994) A Guide to Quantum Groups. Cambridge University Press, Cambridge.
[6]  Belavin, A.A. and Drinfeld, V.G. (1983) Solution of the Classical Yang-Baxter Equation for Simple Lie Algebras. Functional Analysis and Its Applications, 16, 159-180. http://dx.doi.org/10.1007/BF01081585
[7]  Chloup-Arnould, V. (1997) Linearization of Some Poisson-Lie Tensor. Journal of Geometry and Physics, 24, 145-195.
[8]  Dufour, J.P. (1990) Linarisation de certaines structures de Poisson. Journal of Differential Geometry, 32, 415-428.
[9]  Vaisman, I. (1990) Remarks on the Lichnerowicz-Poisson Cohomology. Annales de l’Institut Fourier, 40, 951-963.
http://dx.doi.org/10.5802/aif.1243
[10]  Conn, J. (1984) Normal Forms for Analytic Poisson Structures. Annals of Mathematics, 119, 576-601.
http://dx.doi.org/10.2307/2007086
[11]  Conn, J. (1985) Normal Forms for Smooth Poisson Structures. Annals of Mathematics, 121, 565-593.
http://dx.doi.org/10.2307/1971210

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133