In this
paper we show that if R is a discrete valuation ring,
then R is a filtered ring. We prove some
properties and relation when R is a discrete
valuation ring.
References
[1]
Atiyah, M.F. and Macdonald, L.G. (1969) Introduction to Commutative Algebra. Addison-Wesley Publishing Company.
[2]
Bourbaki, N. (1972) Commutative Algebra. Originally Published as Elements de Mathematique, Algebra Commutative 1964, 1965, 1968, 1969 by Hermann, Paris.
Puninskia, G., Puninskayab, V. and Toffalorib, C. (2007) Decidability of the Theory of Modules over Commutative Valuation Domains. Annals of Pure and Applied Logic, 145, 258-275. http://dx.doi.org/10.1016/j.apal.2006.09.002
[5]
Cohen, F.R. and Heap, A. (2011) Alexandra Pettet on the Andreadakis Johnson Filtration of the Automorphism Group of a Free Group. Journal of Algebra, 329, 72-91. http://dx.doi.org/10.1016/j.jalgebra.2010.07.011
[6]
Levy, R., Loustauna, P. and Shapiro, J. (1991) The Prime Spectrum of an Infinite Product of Copies of Z. Fundamenta Mathematicae, 138, 155-164.
[7]
Nishida, K. (2005) On the Depth of the Associated Graded Ring of a Filtration. Journal of Algebra, 285, 182-195. http://dx.doi.org/10.1016/j.jalgebra.2004.10.026
[8]
Olberding, B., Saydam, S. and SHapiro, J. (2005) Complitions, Valuations and Ultrapowers of Noetherian Domain. Journal of Pure and Applied Algebra, 197, 213-237. http://dx.doi.org/10.1016/j.jpaa.2004.09.002
[9]
Rush, D.E. (2007) Rees Valuations and Asymptotic Primes of Rational Powers in Noetherian Rings and Lattices. Journal of Algebra, 308, 295-320. http://dx.doi.org/10.1016/j.jalgebra.2006.08.014