Methylation Markers for Urine-Based Detection of Bladder Cancer: The Next Generation of Urinary Markers for Diagnosis and Surveillance of Bladder Cancer
Cancer of the urinary bladder is the fifth most common neoplasm in the industrialized countries. Diagnosis and surveillance are dependent on invasive evaluation with cystoscopy and to some degree cytology as an adjunct analysis. Nomuscle invasive bladder cancer is characterized by frequent recurrences after resection, and up to 30% will develop an aggressive phenotype. The journey towards a noninvasive test for diagnosing bladder cancer, in order to replace or extend time between cystoscopy, has been ongoing for more than a decade. However, only a handful of tests that aid in clinical decision making are commercially available. Recent reports of DNA methylation in urine specimens highlight a possible clinical use of this marker type, as high sensitivities and specificities have been shown. This paper will focus on the currently available markers NMP22, ImmunoCyt, and UroVysion as well as novel DNA methylation markers for diagnosis and surveillance of bladder cancer. 1. Introduction Cancer of the urinary bladder is the fifth most common neoplasm in the industrialized countries and in the Unites States, with an estimated 70,530 new cases of bladder cancer diagnosed and with 14,680 deaths in 2010 [1]. Risk factors associated with the development of bladder cancer are mainly smoking and to a lesser extent workplace exposure to carcinogens [2, 3]. No genomic risk markers have been discovered apart from a few SNPs with a very low increase in relative risk [4]. In approximately 70% of all cases the patients will present with nonmuscle invasive bladder cancer (NMIBC) of stages Ta, T1, or Tis, whereas the remaining 30% of the tumors will be muscle invasive stage T2–4 bladder cancers (MIBC). Tumor recurrences are frequent (70%) in patients with NMIBC, whereas progression to MIBC is less frequently observed (10%–30%) [5]. The standard treatment of NMIBC is transurethral resection (TUR) complemented by use of intravesical immunotherapy or chemotherapy in order to preclude recurrence and progression [6]. Risk factors associated with recurrence are tumor size, multiplicity, stage, and grade, whereas the risk factors for progression are tumor size, multiplicity, stage, high grade, and the presence of carcinoma in situ (CIS) [7]. The sensitivity of cystoscopy for NMIBC is close to 80% for white light cystoscopy and 96% when using hexaminolevulinate (HAL). The sensitivity of white light cystoscopy decreases to 48% and 68% for detection of dysplasia and CIS, respectively, whereas the sensitivity of cystoscopy using HAL for these lesions remains in the range of 93% to 95%
References
[1]
A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[2]
D. T. Silverman, L. I. Levin, R. N. Hoover, and P. Hartge, “Occupational risks of bladder cancer in the United States: I. White men,” Journal of the National Cancer Institute, vol. 81, no. 19, pp. 1472–1480, 1989.
[3]
J. Clavel, S. Cordier, L. Boccon-Gibod, and D. Hemon, “Tobacco and bladder cancer in males: increased risk for inhalers and smokers of black tobacco,” International Journal of Cancer, vol. 44, no. 4, pp. 605–610, 1989.
[4]
L. A. Kiemeney, S. Thorlacius, P. Sulem et al., “Sequence variant on 8q24 confers susceptibility to urinary bladder cancer,” Nature Genetics, vol. 40, no. 11, pp. 1307–1312, 2008.
[5]
S. F. Altekruse, M. Krapcho, N. Neyman et al., SEER Cancer Statistics Review, 1975–2007, National Cancer Institute, Bethesda, Md, USA, 2010.
[6]
M. Babjuk, W. Oosterlinck, R. Sylvester et al., “EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update,” European Urology, vol. 59, no. 6, pp. 997–1008, 2011.
[7]
R. J. Sylvester, A. P. M. Van Der Meijden, W. Oosterlinck et al., “Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials,” European Urology, vol. 49, no. 3, pp. 466–475, 2006, discussion pp. 475–477.
[8]
H. B. Grossman, L. Gomella, Y. Fradet et al., “A Phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer,” Journal of Urology, vol. 178, no. 1, pp. 62–67, 2007.
[9]
D. Jocham, F. Witjes, S. Wagner, et al., “Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study,” Journal of Urology, vol. 174, no. 3, p. 862, 2005.
[10]
E. B. C. Avritscher, C. D. Cooksley, H. B. Grossman et al., “Clinical model of lifetime cost of treating bladder cancer and associated complications,” Urology, vol. 68, no. 3, pp. 549–553, 2006.
[11]
M. F. Botteman, C. L. Pashos, A. Redaelli, B. Laskin, and R. Hauser, “The health economics of bladder cancer: a comprehensive review of the published literature,” PharmacoEconomics, vol. 21, no. 18, pp. 1315–1330, 2003.
[12]
G. Mowatt, S. Zhu, M. Kilonzo et al., “Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer,” Health Technology Assessment, vol. 14, no. 4, pp. 1–331, 2010.
[13]
W. M. Murphy, “Current status of urinary cytology in the evaluation of bladder neoplasms,” Human Pathology, vol. 21, no. 9, pp. 886–896, 1990.
[14]
R. Talwar, T. Sinha, S. C. Karan et al., “Voided urinary cytology in bladder cancer: is it time to review the indications?” Urology, vol. 70, no. 2, pp. 267–271, 2007.
[15]
S. Tritschler, M. L. Sommer, J. Straub et al., “Urinary cytology in Era of fluorescence endoscopy: redefining the role of an established method with a new reference standard,” Urology, vol. 76, no. 3, pp. 677–680, 2010.
[16]
R. Berezney and D. S. Coffey, “Identification of a nuclear protein matrix,” Biochemical and Biophysical Research Communications, vol. 60, no. 4, pp. 1410–1417, 1974.
[17]
E. G. Fey, P. Bangs, C. Sparks, and P. Odgren, “The nuclear matrix: defining structural and functional roles,” Critical Reviews in Eukaryotic Gene Expression, vol. 1, no. 2, pp. 127–143, 1991.
[18]
G. A. Carpinito, W. M. Stadler, J. V. Briggman et al., “Urinary nuclear matrix protein as a marker for transitional cell carcinoma of the urinary tract,” Journal of Urology, vol. 156, no. 4, pp. 1280–1285, 1996.
[19]
H. Jamshidian, K. Kor, and M. Djalali, “Urine concentration of nuclear matrix protein 22 for diagnosis of transitional cell carcinoma of bladder,” Urology Journal, vol. 5, no. 4, pp. 243–247, 2008.
[20]
L. E. Ponsky, S. Sharma, L. Pandrangi et al., “Screening and monitoring for bladder cancer: refining the use of NMP22,” Journal of Urology, vol. 166, no. 1, pp. 75–78, 2001.
[21]
S. Vinci, G. Giannarini, C. Selli et al., “Quantitative methylation analysis of BCL2, hTERT, and DAPK promoters in urine sediment for the detection of non-muscle-invasive urothelial carcinoma of the bladder: a prospective, two-center validation study,” Urologic Oncology, vol. 29, no. 2, pp. 150–156, 2011.
[22]
M. Esteller, “Molecular origins of cancer: epigenetics in cancer,” New England Journal of Medicine, vol. 358, no. 11, pp. 1148–1159, 2008.
[23]
D. Takai and P. A. Jones, “Comprehensive analysis of CpG islands in human chromosomes 21 and 22,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3740–3745, 2002.
[24]
P. A. Jones and S. B. Baylin, “The fundamental role of epigenetic events in cancer,” Nature Reviews Genetics, vol. 3, no. 6, pp. 415–428, 2002.
[25]
M. Krakowski, R. Abdelmalik, L. Mocnik, T. Krahl, and N. Sarvetnick, “Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours,” Journal of Pathology, vol. 196, no. 1, pp. 1–7, 2002.
[26]
A. R. Karpf and S. I. Matsui, “Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells,” Cancer Research, vol. 65, no. 19, pp. 8635–8639, 2005.
[27]
A. Eden, F. Gaudet, A. Waghmare, and R. Jaenisch, “Chromosomal instability and tumors promoted by DNA hypomethylation,” Science, vol. 300, no. 5618, p. 455, 2003.
[28]
C. M. Tuck-Muller, A. Narayan, F. Tsien et al., “DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients,” Cytogenetics and Cell Genetics, vol. 89, no. 1-2, pp. 121–128, 2000.
[29]
C. Steinhoff and W. A. Schulz, “Transcriptional regulation of the human LINE-1 retrotransposon L1.2B,” Molecular Genetics and Genomics, vol. 270, no. 5, pp. 394–402, 2003.
[30]
P. A. Jones and M. L. Gonzalgo, “Altered DNA methylation and genome instability: a new pathway to cancer?” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2103–2105, 1997.
[31]
M. Ehrlich, “DNA methylation in cancer: too much, but also too little,” Oncogene, vol. 21, no. 35, pp. 5400–5413, 2002.
[32]
P. A. Jones and S. B. Baylin, “The epigenomics of cancer,” Cell, vol. 128, no. 4, pp. 683–692, 2007.
[33]
B. R. Migeon, “Concerning the role of X-inactivation and DNA methylation in fragile X syndrome,” American Journal of Medical Genetics, vol. 43, no. 1-2, pp. 291–298, 1992.
[34]
E. Li, T. H. Bestor, and R. Jaenisch, “Targeted mutation of the DNA methyltransferase gene results in embryonic lethality,” Cell, vol. 69, no. 6, pp. 915–926, 1992.
[35]
E. Li, C. Beard, and R. Jaenisch, “Role for DNA methylation in genomic imprinting,” Nature, vol. 366, no. 6453, pp. 362–365, 1993.
[36]
G. Egger, G. Liang, A. Aparicio, and P. A. Jones, “Epigenetics in human disease and prospects for epigenetic therapy,” Nature, vol. 429, no. 6990, pp. 457–463, 2004.
[37]
E. M. Wolff, Y. Chihara, F. Pan et al., “Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue,” Cancer Research, vol. 70, no. 20, pp. 8169–8178, 2010.
[38]
T. Reinert, C. Modin, F. M. Castano et al., “Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers,” Clinical Cancer Research, vol. 17, no. 17, pp. 5582–5592, 2011.
[39]
D. R. Yates, I. Rehman, M. F. Abbod et al., “Promoter hypermethylation identifies progression risk in bladder cancer,” Clinical Cancer Research, vol. 13, no. 7, pp. 2046–2053, 2007.
[40]
S. Jarmalaite, F. Jankevicius, K. Kurgonaite, K. Suziedelis, P. Mutanen, and K. Husgafvel-Pursiainen, “Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer,” Oncology, vol. 75, no. 3-4, pp. 145–151, 2008.
[41]
M. O. Hoque, S. Begum, M. Brait et al., “Tissue inhibitor of metalloproteinases-3 promoter methylation is an independent prognostic factor for bladder cancer,” Journal of Urology, vol. 179, no. 2, pp. 743–747, 2008.
[42]
M. G. Friedrich, S. Chandrasoma, K. D. Siegmund et al., “Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma,” European Journal of Cancer, vol. 41, no. 17, pp. 2769–2778, 2005.
[43]
J. W. F. Catto, A. R. Azzouzi, I. Rehman et al., “Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma,” Journal of Clinical Oncology, vol. 23, no. 13, pp. 2903–2910, 2005.
[44]
M. Brait, S. Begum, A. L. Carvalho et al., “Aberrant promoter methylation of multiple genes during pathogenesis of bladder cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 10, pp. 2786–2794, 2008.
[45]
Y. Tada, M. Wada, K. I. Taguchi et al., “The association of Death-associated Protein Kinase hypermethylation with early recurrence in superficial bladder cancers,” Cancer Research, vol. 62, no. 14, pp. 4048–4053, 2002.
[46]
W. J. Kim, E. J. Kim, P. Jeong et al., “RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors,” Cancer Research, vol. 65, no. 20, pp. 9347–9354, 2005.
[47]
F. Christoph, S. Weikert, C. Kempkensteffen et al., “Regularly methylated novel pro-apoptotic genes associated with recurrence in transitional cell carcinoma of the bladder,” International Journal of Cancer, vol. 119, no. 6, pp. 1396–1402, 2006.
[48]
R. Kandimalla, A. A. G. Van Tilborg, L. C. Kompier et al., “Genome-wide analysis of CpG Island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers,” European Urology, vol. 61, no. 6, pp. 1245–1256, 2012.
[49]
S. Veerla, I. Panagopoulos, Y. Jin, D. Lindgren, and M. H?glund, “Promoter analysis of epigenetically controlled genes in bladder cancer,” Genes Chromosomes and Cancer, vol. 47, no. 5, pp. 368–378, 2008.
[50]
S. Urakami, H. Shiina, H. Enokida et al., “Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/β-catenin signaling pathway,” Clinical Cancer Research, vol. 12, no. 2, pp. 383–391, 2006.
[51]
R. Stoehr, C. Wissmann, H. Suzuki et al., “Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer,” Laboratory Investigation, vol. 84, no. 4, pp. 465–478, 2004.
[52]
R. C. Sobti, K. MalekZadeh, M. Nikbakht, I. A. Sadeghi, M. Shekari, and S. K. Singh, “Hypermethylation-mediated partial transcriptional silencing of DAP-kinase gene in bladder cancer,” Biomarkers, vol. 15, no. 2, pp. 167–174, 2010.
[53]
K. Mori, H. Enokida, I. Kagara et al., “CpG hypermethylation of collagen type I α 2 contributes to proliferation and migration activity of human bladder cancer,” International Journal of Oncology, vol. 34, no. 6, pp. 1593–1602, 2009.
[54]
V. B. Lokeshwar, P. Gomez, M. Kramer et al., “Epigenetic regulation of HYAL-1 hyaluronidase expression: identification of HYAL-1 promoter,” Journal of Biological Chemistry, vol. 283, no. 43, pp. 29215–29227, 2008.
[55]
M. G. Lee, H. Y. Kim, D. S. Byun et al., “Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma,” Cancer Research, vol. 61, no. 18, pp. 6688–6692, 2001.
[56]
S. S. Khin, R. Kitazawa, N. Win et al., “BAMBI gene is epigenetically silenced in subset of high-grade bladder cancer,” International Journal of Cancer, vol. 125, no. 2, pp. 328–338, 2009.
[57]
V. Cebrian, M. Alvarez, A. Aleman et al., “Discovery of myopodin methylation in bladder cancer,” Journal of Pathology, vol. 216, no. 1, pp. 111–119, 2008.
[58]
A. Aleman, L. Adrien, L. Lopez-Serra et al., “Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays,” British Journal of Cancer, vol. 98, no. 2, pp. 466–473, 2008.
[59]
J.-P. Issa, “Aging, DNA methylation and cancer,” Critical Reviews in Oncology/Hematology, vol. 32, no. 1, pp. 31–43, 1999.
[60]
B. C. Christensen, E. A. Houseman, C. J. Marsit et al., “Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CPG island context,” PLoS Genetics, vol. 5, no. 8, Article ID e1000602, 2009.
[61]
C. J. Marsit, E. A. Houseman, A. R. Schned, M. R. Karagas, and K. T. Kelsey, “Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer,” Carcinogenesis, vol. 28, no. 8, pp. 1745–1751, 2007.
[62]
A. Aleman, V. Cebrian, M. Alvarez et al., “Identification of PMF1 methylation in association with bladder cancer progression,” Clinical Cancer Research, vol. 14, no. 24, pp. 8236–8243, 2008.
[63]
P. C. Chen, M. H. Tsai, S. K. Yip et al., “Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine,” BMC Medical Genomics, vol. 4, article 45, 2011.
[64]
W. Chung, J. Bondaruk, J. Jelinek et al., “Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 7, pp. 1483–1491, 2011.
[65]
T. Reinert, et al., “Diagnosis of bladder cancer recurrence based on urinary levels of ZNF154, EOMES, HOXA9, POU4F2, TWIST1, and VIM hypermethylation”.
[66]
I. Renard, S. Joniau, B. van Cleynenbreugel et al., “Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples,” European Urology, vol. 58, no. 1, pp. 96–104, 2010.
[67]
R. R. Serizawa, U. Ralfki?r, K. Steven et al., “Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events,” International Journal of Cancer, vol. 129, no. 1, pp. 78–87, 2011.
[68]
S. Urakami, H. Shiina, H. Enokida et al., “Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection,” Clinical Cancer Research, vol. 12, no. 7 I, pp. 2109–2116, 2006.
[69]
D. R. Yates, I. Rehman, M. Meuth, S. S. Cross, F. C. Hamdy, and J. W. F. Catto, “Methylational urinalysis: a prospective study of bladder cancer patients and age stratified benign controls,” Oncogene, vol. 25, no. 13, pp. 1984–1988, 2006.
[70]
M. W. Y. Chan, L. W. Chan, N. L. S. Tang et al., “Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients,” International Journal of Cancer, vol. 104, no. 5, pp. 611–616, 2003.
[71]
M. W. Y. Chan, L. W. Chan, N. L. S. Tang et al., “Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients,” Clinical Cancer Research, vol. 8, no. 2, pp. 464–470, 2002.
[72]
V. L. Costa, R. Henrique, S. A. Danielsen et al., “Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples,” Clinical Cancer Research, vol. 16, no. 23, pp. 5842–5851, 2010.
[73]
E. Dulaimi, R. G. Uzzo, R. E. Greenberg, T. Al-Saleem, and P. Cairns, “Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel,” Clinical Cancer Research, vol. 10, no. 6, pp. 1887–1893, 2004.
[74]
M. G. Friedrich, D. J. Weisenberger, J. C. Cheng et al., “Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients,” Clinical Cancer Research, vol. 10, no. 22, pp. 7457–7465, 2004.
[75]
M. O. Hoque, S. Begum, O. Topaloglu et al., “Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection,” Journal of the National Cancer Institute, vol. 98, no. 14, pp. 996–1004, 2006.
[76]
H. H. Lin, H. L. Ke, S. P. Huang, W. J. Wu, Y. K. Chen, and L. L. Chang, “Increase sensitivity in detecting superficial, low grade bladder cancer by combination analysis of hypermethylation of E-cadherin, p16, p14, RASSF1A genes in urine,” Urologic Oncology, vol. 28, no. 6, pp. 597–602, 2010.
[77]
J. Yu, T. Zhu, Z. Wang et al., “A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer,” Clinical Cancer Research, vol. 13, no. 24, pp. 7296–7304, 2007.
[78]
P. Villicana, B. Whifting, S. Goodison, and C. J. Rosser, “Urine-based assays for the detection of bladder cancer,” Biomarkers in Medicine, vol. 3, no. 3, pp. 265–274, 2009.
[79]
M. Rouprêt, V. Hupertan, D. R. Yates et al., “A comparison of the performance of microsatellite and methylation urine analysis for predicting the recurrence of urothelial cell carcinoma, and definition of a set of markers by Bayesian network analysis,” British Journal of Urology International, vol. 101, no. 11, pp. 1448–1453, 2008.
[80]
T. C. Zuiverloon, W. Beukers, K. A. Van Der Keur et al., “A methylation assay for the detection of non-muscle-invasive bladder cancer (NMIBC) recurrences in voided urine,” British Journal of Urology International, vol. 109, no. 6, pp. 941–948, 2012.
[81]
U. G. Sathyanarayana, R. Maruyama, A. Padar et al., “Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes,” Cancer Research, vol. 64, no. 4, pp. 1425–1430, 2004.
[82]
B. J. Yoder, M. Skacel, R. Hedgepeth et al., “Reflex UroVysion testing of bladder cancer surveillance patients with equivocal or negative urine cytology: a prospective study with focus on the natural history of anticipatory positive findings,” American Journal of Clinical Pathology, vol. 127, no. 2, pp. 295–301, 2007.
[83]
O. Yossepowitch, H. W. Herr, and S. M. Donat, “Use of urinary biomarkers for bladder cancer surveillance: patient perspectives,” Journal of Urology, vol. 177, no. 4, pp. 1277–1282, 2007.