全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bessel Function and Damped Simple Harmonic Motion

DOI: 10.4236/jamp.2014.24004, PP. 26-34

Keywords: Bessel Function, Simple Harmonic Motion, Damped Sinusoidal Function, Lengthening Pendulum, Spring-Mass System, Lagrange Polynomial

Full-Text   Cite this paper   Add to My Lib

Abstract:

A glance at Bessel functions shows they behave similar to the damped sinusoidal function. In this paper two physical examples (pendulum and spring-mass system with linearly increasing length and mass respectively) have been used as evidence for this observation. It is shown in this paper how Bessel functions can be approximated by the damped sinusoidal function. The numerical method that is introduced works very well in adiabatic condition (slow change) or in small time (independent variable) intervals. The results are also compared with the Lagrange polynomial.

References

[1]  Werner, A. and Eliezer, J.C. (1969) The Lengthening Pendulum. Journal of Australian Mathematical Society, 9, 331-336. http://dx.doi.org/10.1017/S1446788700007254
[2]  Littlewood, J.E. (1963) Lorentz’s Pendulum Problem. Annals of Physics, 21, 233-249.
http://dx.doi.org/10.1016/0003-4916(63)90107-6
[3]  Littlewood, J.E. (1964) Adiabatic Invariance III. The Equation . Annals of Physics, 29, 1-12.
http://dx.doi.org/10.1016/0003-4916(64)90188-5
[4]  Littlewood, J.E. (1964) Adiabatic Invariance IV: Note on a New Method for Lorentz’s Pendulum Problem. Annals of Physics, 29, 13-18. http://dx.doi.org/10.1016/0003-4916(64)90189-7
[5]  Littlewood, J.E. (1964) Adiabatic Invariance V. Multiple Periods. Annals of Physics, 30, 138-153.
http://dx.doi.org/10.1016/0003-4916(64)90307-0
[6]  Brearley, M.N. (1966) The Simple Pendulum with Uniformly Changing String Length. Proceedings of the Edinburgh Mathematical Society (Series 2), 15, 61-66.
[7]  Sánchez-Soto, L.L. and Zoido, J. (2013) Variations on the Adiabatic Invariance: The Lorentz Pendulum. American Journal of Physics, 81, 57. http://dx.doi.org/10.1119/1.4763746
[8]  Boas, M.L. (2006) Mathematical Methods in the Physical Science. 3rd Edition, Wiley, 598-599.
[9]  Gil, A., Segura, J. and Temme, N. (2007) Numerical Methods for Special Functions. SIAM.
http://dx.doi.org/10.1137/1.9780898717822
[10]  Garcia, A.L. (2000) Method for Physics. 2nd Edition, Prentice-Hall, NJ.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133