Recent therapeutic advances for managing advanced prostate cancer include the successful targeting of the androgen-AR axis with several new drugs in castrate resistant prostate cancer including abiraterone acetate and enzalutamide (MDV3100). This translational progress from “bench to bed-side” has resulted in an enlarging repertoire of novel and traditional drug choices now available for use in advanced prostate cancer therapeutics, which has had a positive clinical impact in prolonging longevity and quality of life of advanced prostate cancer patients. In order to further the clinical utility of these drugs, development of predictive biomarkers guiding individual therapeutic choices remains an ongoing challenge. This paper will summarize the potential in developing predictive biomarkers based on the pathophysiology of the androgen-AR axis in tumor tissue from patients with advanced prostate cancer as well as inherited variation in the patient’s genome. Specific examples of rational clinical trial designs incorporating potential predictive biomarkers from these pathways will illustrate several aspects of pharmacogenetic and pharmacogenomic predictive biomarker development in advanced prostate cancer therapeutics. 1. Introduction Prostate cancer (PCa) is the second leading cause of cancer-related mortality in US men with an estimated 33,720 deaths in 2011 [1]. Virtually all PCa-related deaths occur in patients with metastatic-stage disease, the initial treatment for which is androgen deprivation therapy (ADT) [2, 3]. In addition to advanced metastatic stage disease, ADT has also been used for treating locally advanced PCa and for biochemically relapsed disease after failure of localized-stage treatments with radical prostatectomy or radiation therapy. It has been estimated that a third of the over 2.3 million men with PCa in the US received ADT in 2007 as part of their care [4]. ADT therefore constitutes a significant clinical therapy for PCa patients. However, while it provides effective control of disease for variable time periods [5–8] in metastatic PCa patients, ADT also contributes to side effects including osteoporosis, loss of sexual libido, increased risk of diabetes and coronary artery disease, and metabolic syndrome [9]. Several challenges therefore remain in the use of ADT in PCa. Foremost is the lack of validated biomarkers predictive of treatment response to ADT or side effects of ADT which can be incorporated into designing clinical trials that optimize ADT treatment effects. Since the physiological basis of ADT action is to block the
References
[1]
R. Siegel, E. Ward, O. Brawley, et al., “Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths,” CA—A Cancer Journal for Clinicians, vol. 61, no. 4, pp. 212–236, 2011.
[2]
C. Huggins, “Prostatic cancer treated by orchiectomy, the five year results,” The Journal of the American Medical Association, vol. 131, no. 7, pp. 576–581, 1946.
[3]
C. Huggins and C. V. Hodges, “Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941,” Journal of Urology, vol. 168, no. 1, pp. 9–12, 2002.
[4]
N. Howlader, A. M. Noone, M. Krapcho, et al., SEER Cancer Statistics Review, 1976–2008, National Cancer Institute, Bethesda, Md, USA, 2011.
[5]
E. D. Crawford, M. A. Eisenberger, D. G. McLeod et al., “A controlled trial of leuprolide with and without flutamide in prostatic carcinoma,” The New England Journal of Medicine, vol. 321, no. 7, pp. 419–424, 1989.
[6]
L. J. Denis, F. Keuppens, P. H. Smith et al., “Maximal androgen blockade: final analysis of EORTC phase III trial 30853,” European Urology, vol. 33, no. 2, pp. 144–151, 1998.
[7]
M. A. Eisenberger, B. A. Blumenstein, E. D. Crawford et al., “Bilateral orchiectomy with or without flutamide for metastatic prostate cancer,” The New England Journal of Medicine, vol. 339, no. 15, pp. 1036–1042, 1998.
[8]
O. Dalesio, H. Van Tinteren, M. Clarke, R. Peto, and F. H. Schroder, “Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials,” The Lancet, vol. 355, no. 9214, pp. 1491–1498, 2000.
[9]
N. L. Keating, A. J. O'Malley, and M. R. Smith, “Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer,” Journal of Clinical Oncology, vol. 24, no. 27, pp. 4448–4456, 2006.
[10]
I. B. Weinstein and A. Joe, “Oncogene addiction,” Cancer Research, vol. 68, no. 9, pp. 3077–3080, 2008.
[11]
L. A. Garraway and W. R. Sellers, “Lineage dependency and lineage-survival oncogenes in human cancer,” Nature Reviews Cancer, vol. 6, no. 8, pp. 593–602, 2006.
[12]
D. W. Russell and J. D. Wilson, “Steroid 5α-reductase: two genes/two enzymes,” Annual Review of Biochemistry, vol. 63, pp. 25–61, 1994.
[13]
D. B. Lubahn, T. R. Brown, J. A. Simental et al., “Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 23, pp. 9534–9538, 1989.
[14]
D. N. Lavery and I. J. McEwan, “Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations,” Biochemical Journal, vol. 391, no. 3, pp. 449–464, 2005.
[15]
D. N. Lavery and I. J. McEwan, “The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics,” Biochemical Society Transactions, vol. 34, no. 6, pp. 1054–1057, 2006.
[16]
H. V. Heemers and D. J. Tindall, “Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex,” Endocrine Reviews, vol. 28, no. 7, pp. 778–808, 2007.
[17]
J. T. Isaacs, Y. Furuya, and R. Berges, “The role of androgen in the regulation of programmed cell death/apoptosis in normal and malignant prostatic tissue,” Seminars in Cancer Biology, vol. 5, no. 5, pp. 391–400, 1994.
[18]
F. A. Vicini, C. Vargas, A. Abner, L. Kestin, E. Horwitz, and A. Martinez, “Limitations in the use of serum prostate specific antigen levels to monitor patients after treatment for prostate cancer,” Journal of Urology, vol. 173, no. 5, pp. 1456–1462, 2005.
[19]
J. A. Smith Jr., P. H. Lange, R. A. Janknegt, C. C. Abbou, and A. DeGery, “Serum markers as a predictor of response duration and patient survival after hormonal therapy for metastatic carcinoma of the prostate,” Journal of Urology, vol. 157, no. 4, pp. 1329–1334, 1997.
[20]
E. J. Small and M. Roach, “Prostate-specific antigen in prostate cancer: a case study in the development of a tumor marker to monitor recurrence and assess response,” Seminars in Oncology, vol. 29, no. 3, pp. 264–273, 2002.
[21]
R. W. Ross, W. Xie, M. M. Regan et al., “Efficacy of androgen deprivation therapy (ADT) in patients with advanced prostate cancer: association between gleason score, prostate-specific antigen level, and prior ADT exposure with duration of ADT effect,” Cancer, vol. 112, no. 6, pp. 1247–1253, 2008.
[22]
D. I. Quinn, S. M. Henshall, and R. L. Sutherland, “Molecular markers of prostate cancer outcome,” European Journal of Cancer, vol. 41, no. 6, pp. 858–887, 2005.
[23]
M. Kohli and D. J. Tindall, “New developments in the medical management of prostate cancer,” Mayo Clinic Proceedings, vol. 85, no. 1, pp. 77–86, 2010.
[24]
G. Attard, J. Richards, and J. S. De Bono, “New strategies in metastatic prostate cancer: targeting the androgen receptor signaling pathway,” Clinical Cancer Research, vol. 17, no. 7, pp. 1649–1657, 2011.
[25]
Y. Chen, N. J. Clegg, and H. I. Scher, “Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target,” The Lancet Oncology, vol. 10, no. 10, pp. 981–991, 2009.
[26]
Z. Culig and G. Bartsch, “Androgen axis in prostate cancer,” Journal of Cellular Biochemistry, vol. 99, no. 2, pp. 373–381, 2006.
[27]
K. E. Knudsen and H. I. Scher, “Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer,” Clinical Cancer Research, vol. 15, no. 15, pp. 4792–4798, 2009.
[28]
K. J. Pienta and D. Bradley, “Mechanisms underlying the development of androgen-independent prostate cancer,” Clinical Cancer Research, vol. 12, no. 6, pp. 1665–1671, 2006.
[29]
J. Sun, W. Liu, T. S. Adams et al., “DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies,” Prostate, vol. 67, no. 7, pp. 692–700, 2007.
[30]
W. Liu, S. Laitinen, S. Khan et al., “Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer,” Nature Medicine, vol. 15, no. 5, pp. 559–565, 2009.
[31]
X. Mao, Y. Yu, L. K. Boyd et al., “Distinct genomic alterations in prostate cancers in Chinese and Western populations suggest alternative pathways of prostate carcinogenesis,” Cancer Research, vol. 70, no. 13, pp. 5207–5212, 2010.
[32]
I. N. Holcomb, J. M. Young, I. M. Coleman et al., “Comparative analyses of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer,” Cancer Research, vol. 69, no. 19, pp. 7793–7802, 2009.
[33]
C. Ruiz, E. Lenkiewicz, L. Evers et al., “Advancing a clinically relevant perspective of the clonal nature of cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12054–12059, 2011.
[34]
A. Kumar, T. A. White, A. P. MacKenzie, et al., “Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 41, pp. 17087–17092, 2011.
[35]
C. M. Robbins, W. A. Tembe, A. Baker et al., “Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors,” Genome Research, vol. 21, no. 1, pp. 47–55, 2011.
[36]
B. S. Taylor, N. Schultz, H. Hieronymus et al., “Integrative genomic profiling of human prostate cancer,” Cancer Cell, vol. 18, no. 1, pp. 11–22, 2010.
[37]
M. F. Berger, M. S. Lawrence, F. Demichelis et al., “The genomic complexity of primary human prostate cancer,” Nature, vol. 470, no. 7333, pp. 214–220, 2011.
[38]
J. Edwards, N. S. Krishna, K. M. Grigor, and J. M. S. Bartlett, “Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer,” British Journal of Cancer, vol. 89, no. 3, pp. 552–556, 2003.
[39]
O. H. Ford III, C. W. Gregory, D. Kim, A. B. Smitherman, and J. L. Mohler, “Androgen receptor gene amplification and protein expression in recurrent prostate cancer,” Journal of Urology, vol. 170, no. 5, pp. 1817–1821, 2003.
[40]
M. J. Linja, K. J. Savinainen, O. R. Saram?ki, T. L. J. Tammela, R. L. Vessella, and T. Visakorpi, “Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer,” Cancer Research, vol. 61, no. 9, pp. 3550–3555, 2001.
[41]
T. Visakorpi, E. Hyytinen, P. Koivisto et al., “In vivo amplification of the androgen receptor gene and progression of human prostate cancer,” Nature Genetics, vol. 9, no. 4, pp. 401–406, 1995.
[42]
M. A. Leversha, J. Han, Z. Asgari et al., “Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer,” Clinical Cancer Research, vol. 15, no. 6, pp. 2091–2097, 2009.
[43]
G. Attard, J. F. Swennenhuis, D. Olmos et al., “Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer,” Cancer Research, vol. 69, no. 7, pp. 2912–2918, 2009.
[44]
J. P. Bergerat and J. Céraline, “Pleiotropic functional properties of androgen receptor mutants in prostate cancer,” Human Mutation, vol. 30, no. 2, pp. 145–157, 2009.
[45]
G. N. Brooke and C. L. Bevan, “The role of androgen receptor mutations in prostate cancer progression,” Current Genomics, vol. 10, no. 1, pp. 18–25, 2009.
[46]
B. Gottlieb, L. K. Beitel, A. Nadarajah, M. Paliouras, and M. Trifiro, “The androgen receptor gene mutations database: 2012 update,” Human Mutation, vol. 33, no. 5, pp. 887–894, 2012.
[47]
W. D. Tilley, C. M. Wilson, M. Marcelli, and M. J. McPhaul, “Androgen receptor gene expression in human prostate carcinoma cell lines,” Cancer Research, vol. 50, no. 17, pp. 5382–5386, 1990.
[48]
J. Thompson, E. R. Hyytinen, K. Haapala et al., “Androgen receptor mutations in high-grade prostate cancer before hormonal therapy,” Laboratory Investigation, vol. 83, no. 12, pp. 1709–1713, 2003.
[49]
K. Haapala, E. R. Hyytinen, M. Roiha et al., “Androgen receptor alterations in prostate cancer relapsed during a combined androgen blockade by orchiectomy and bicalutamide,” Laboratory Investigation, vol. 81, no. 12, pp. 1647–1651, 2001.
[50]
E. R. Hyytinen, K. Haapala, J. Thompson et al., “Pattern of somatic androgen receptor gene mutations in patients with hormone-refractory prostate cancer,” Laboratory Investigation, vol. 82, no. 11, pp. 1591–1598, 2002.
[51]
M. E. Taplin, G. J. Bubley, T. D. Shuster et al., “Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer,” The New England Journal of Medicine, vol. 332, no. 21, pp. 1393–1398, 1995.
[52]
M. E. Taplin, G. J. Bubley, Y. J. Ko et al., “Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist,” Cancer Research, vol. 59, no. 11, pp. 2511–2515, 1999.
[53]
M. E. Taplin, B. Rajeshkumar, S. Halabi et al., “Androgen receptor mutations in androgen-independent prostate cancer: cancer and leukemia group B study 9663,” Journal of Clinical Oncology, vol. 21, no. 14, pp. 2673–2678, 2003.
[54]
M. P. Steinkamp, O. A. O'Mahony, M. Brogley et al., “Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy,” Cancer Research, vol. 69, no. 10, pp. 4434–4442, 2009.
[55]
G. Buchanan, N. M. Greenberg, H. I. Scher, J. M. Harris, V. R. Marshall, and W. D. Tilley, “Collocation of androgen receptor gene mutations in prostate cancer,” Clinical Cancer Research, vol. 7, no. 5, pp. 1273–1281, 2001.
[56]
X. Y. Zhao, P. J. Malloy, A. V. Krishnan et al., “Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor,” Nature Medicine, vol. 6, no. 6, pp. 703–706, 2000.
[57]
Z. Culig, A. Hobisch, M. V. Cronauer et al., “Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone,” Molecular Endocrinology, vol. 7, no. 12, pp. 1541–1550, 1993.
[58]
Z. Culig, J. Stober, A. Gast et al., “Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone,” Cancer Detection and Prevention, vol. 20, no. 1, pp. 68–75, 1996.
[59]
J. M. Bentel and W. D. Tilley, “Androgen receptors in prostate cancer,” Journal of Endocrinology, vol. 151, no. 1, pp. 1–11, 1996.
[60]
J. Veldscholte, C. Ris-Stalpers, G. G. J. M. Kuiper et al., “A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens,” Biochemical and Biophysical Research Communications, vol. 173, no. 2, pp. 534–540, 1990.
[61]
G. Buchanan, M. Yang, J. M. Harris et al., “Mutations at the boundary of the hinge and ligand binding domain of the androgen receptor confer increased transactivation function,” Molecular Endocrinology, vol. 15, no. 1, pp. 46–56, 2001.
[62]
G. Chen, X. Wang, S. Zhang et al., “Androgen receptor mutants detected in recurrent prostate cancer exhibit diverse functional characteristics,” Prostate, vol. 63, no. 4, pp. 395–406, 2005.
[63]
W. D. Tilley, G. Buchanan, T. E. Hickey, and J. M. Bentel, “Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence,” Clinical Cancer Research, vol. 2, no. 2, pp. 277–285, 1996.
[64]
G. Han, G. Buchanan, M. Ittmann et al., “Mutation of the androgen receptor causes oncogenic transformation of the prostate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 4, pp. 1151–1156, 2005.
[65]
B. He, J. A. Kemppainen, and E. M. Wilson, “FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor,” The Journal of Biological Chemistry, vol. 275, no. 30, pp. 22986–22994, 2000.
[66]
S. M. Dehm, K. M. Regan, L. J. Schmidt, and D. J. Tindall, “Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion-independent prostate cancer cells,” Cancer Research, vol. 67, no. 20, pp. 10067–10077, 2007.
[67]
X. B. Shi, A. H. Ma, C. G. Tepper et al., “Molecular alterations associated with LNCaP cell progression to androgen independence,” Prostate, vol. 60, no. 3, pp. 257–271, 2004.
[68]
S. M. Dehm, L. J. Schmidt, H. V. Heemers, R. L. Vessella, and D. J. Tindall, “Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance,” Cancer Research, vol. 68, no. 13, pp. 5469–5477, 2008.
[69]
Z. Guo, X. Yang, F. Sun et al., “A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth,” Cancer Research, vol. 69, no. 6, pp. 2305–2313, 2009.
[70]
R. Hu, T. A. Dunn, S. Wei et al., “Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer,” Cancer Research, vol. 69, no. 1, pp. 16–22, 2009.
[71]
S. Sun, C. C. T. Sprenger, R. L. Vessella et al., “Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant,” Journal of Clinical Investigation, vol. 120, no. 8, pp. 2715–2730, 2010.
[72]
P. A. Watson, Y. F. Chen, M. D. Balbas et al., “Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 39, pp. 16759–16765, 2010.
[73]
Y. Li, M. Alsagabi, D. Fan, G. S. Bova, A. H. Tewfik, and S. M. Dehm, “Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression,” Cancer Research, vol. 71, no. 6, pp. 2108–2117, 2011.
[74]
Y. Li, T. H. Hwang, L. Oseth, et al., “AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression,” Oncogene. In press.
[75]
C. Kumar-Sinha, S. A. Tomlins, and A. M. Chinnaiyan, “Recurrent gene fusions in prostate cancer,” Nature Reviews Cancer, vol. 8, no. 7, pp. 497–511, 2008.
[76]
C. Cai, H. Wang, Y. Xu, S. Chen, and S. P. Balk, “Reactivation of androgen receptor-regulated TMPRSS2:ERG gene expression in castration-resistant prostate cancer,” Cancer Research, vol. 69, no. 15, pp. 6027–6032, 2009.
[77]
C. Wu, A. W. Wyatt, A. V. Lapuk, et al., “Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer,” Journal of Pathology, vol. 227, no. 1, pp. 53–61, 2012.
[78]
T. W. Friedlander, R. Roy, S. A. Tomlins et al., “Common structural and epigenetic changes in the genome of castration-resistant prostate cancer,” Cancer Research, vol. 72, no. 3, pp. 616–625, 2012.
[79]
T. Saloniemi, H. Jokela, L. Strauss, P. Pakarinen, and M. Poutanen, “The diversity of sex steroid action: novel functions of hydroxysteroid (17β) dehydrogenases as revealed by genetically modified mouse models,” Journal of Endocrinology, vol. 212, no. 1, pp. 27–40, 2012.
[80]
A. T. El Gammal, M. Brüchmann, J. Zustin et al., “Chromosome 8p deletions and 8q gains are associated with tumor progression and poor prognosis in prostate cancer,” Clinical Cancer Research, vol. 16, no. 1, pp. 56–64, 2010.
[81]
H. Heemers, G. Verrijdt, S. Organe et al., “Identification of an androgen response element in intron 8 of the sterol regulatory element-binding protein cleavage-activating protein gene allowing direct regulation by the androgen receptor,” The Journal of Biological Chemistry, vol. 279, no. 29, pp. 30880–30887, 2004.
[82]
J. D. Debes, L. J. Schmidt, H. Huang, and D. J. Tindall, “p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6,” Cancer Research, vol. 62, no. 20, pp. 5632–5636, 2002.
[83]
J. D. Debes, T. J. Sebo, C. M. Lohse, L. M. Murphy, D. A. L. Haugen, and D. J. Tindall, “p300 in prostate cancer proliferation and progression,” Cancer Research, vol. 63, no. 22, pp. 7638–7640, 2003.
[84]
H. J. Lenz, “The use and development of germline polymorphisms in clinical oncology,” Journal of Clinical Oncology, vol. 22, no. 13, pp. 2519–2521, 2004.
[85]
R. W. Ross, W. K. Oh, W. Xie et al., “Inherited variation in the androgen pathway is associated with the efficacy of androgen-deprivation therapy in men with prostate cancer,” Journal of Clinical Oncology, vol. 26, no. 6, pp. 842–847, 2008.
[86]
M. Kohli, S. M. Riska, D. W. Mahoney et al., “Germline predictors of androgen deprivation therapy response in advanced prostate cancer,” Mayo Clinic Proceedings, vol. 87, no. 3, pp. 240–246, 2012.
[87]
M. Yang, W. Xie, E. Mostaghel et al., “SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer,” Journal of Clinical Oncology, vol. 29, no. 18, pp. 2565–2573, 2011.
[88]
C.-N. Huang, S.-P. Huang, J.-B. Pao et al., “Genetic polymorphisms in oestrogen receptor-binding sites affect clinical outcomes in patients with prostate cancer receiving androgen-deprivation therapy,” Journal of Internal Medicine, vol. 271, no. 5, pp. 499–509, 2012.
[89]
C.-N. Huang, S.-P. Huang, J.-B. Pao et al., “Genetic polymorphisms in androgen receptor-binding sites predict survival in prostate cancer patients receiving androgen-deprivation therapy,” Annals of Oncology, vol. 23, no. 3, pp. 707–713, 2012.
[90]
T. Sun, G. S. M. Lee, L. Werner et al., “Inherited variations in AR, ESR1, and ESR2 genes are not associated with prostate cancer aggressiveness or with efficacy of androgen deprivation therapy,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 7, pp. 1871–1878, 2010.
[91]
J. S. De Bono, G. Attard, A. Adjei et al., “Potential applications for circulating tumor cells expressing the insulin-like growth factor-I receptor,” Clinical Cancer Research, vol. 13, no. 12, pp. 3611–3616, 2007.
[92]
D. R. Shaffer, M. A. Leversha, D. C. Danila et al., “Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer,” Clinical Cancer Research, vol. 13, no. 7, pp. 2023–2029, 2007.
[93]
D. C. Danila, M. Fleisher, and H. I. Scher, “Circulating tumor cells as biomarkers in prostate cancer,” Clinical Cancer Research, vol. 17, no. 12, pp. 3903–3912, 2011.
[94]
Y. Jiang, J. F. Palma, D. B. Agus, Y. Wang, and M. E. Gross, “Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer,” Clinical Chemistry, vol. 56, no. 9, pp. 1492–1495, 2010.
[95]
D. de Jong, S. L. J. Verbeke, D. Meijer, P. C. W. Hogendoorn, J. V. M. G. Bovee, and K. Szuhai, “Opening the archives for state of the art tumour genetic research: sample processing for array-CGH using decalcified, formalin-fixed, paraffin-embedded tissue-derived DNA samples,” BMC Research Notes, vol. 4, article 1, 2011.
[96]
N. C. Buchan and S. L. Goldenberg, “Intermittent androgen suppression for prostate cancer,” Nature Reviews Urology, vol. 7, no. 10, pp. 552–560, 2010.
[97]
C. N. A. M. Oldenhuis, S. F. Oosting, J. A. Gietema, and E. G. E. de Vries, “Prognostic versus predictive value of biomarkers in oncology,” European Journal of Cancer, vol. 44, no. 7, pp. 946–953, 2008.
[98]
R. Simon, “The use of genomics in clinical trial design,” Clinical Cancer Research, vol. 14, no. 19, pp. 5984–5993, 2008.
[99]
R. Simon and S. J. Wang, “Use of genomic signatures in therapeutics development in oncology and other diseases,” Pharmacogenomics Journal, vol. 6, no. 3, pp. 166–173, 2006.
[100]
R. Simon and A. Maitournam, “Evaluating the efficiency of targeted designs for randomized clinical trials,” Clinical Cancer Research, vol. 10, no. 20, pp. 6759–6763, 2004.
[101]
A. Liu, C. Liu, Q. Li, K. F. Yu, and V. W. Yuan, “A threshold sample-enrichment approach in a clinical trial with heterogeneous subpopulations,” Clinical Trials, vol. 7, no. 5, pp. 537–545, 2010.
[102]
S. J. Wang, R. T. O'Neill, and H. M. J. Hung, “Approaches to evaluation of treatment effect in randomized clinical trials with genomic subset,” Pharmaceutical Statistics, vol. 6, no. 3, pp. 227–244, 2007.
[103]
D. J. Sargent, B. A. Conley, C. Allegra, and L. Collette, “Clinical trial designs for predictive marker validation in cancer treatment trials,” Journal of Clinical Oncology, vol. 23, no. 9, pp. 2020–2027, 2005.
[104]
B. Freidlin and R. Simon, “Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients,” Clinical Cancer Research, vol. 11, no. 21, pp. 7872–7878, 2005.
[105]
J. C. Eickhoff, K. Kim, J. Beach, J. M. Kolesar, and J. R. Gee, “A Bayesian adaptive design with biomarkers for targeted therapies,” Clinical Trials, vol. 7, no. 5, pp. 546–556, 2010.
[106]
J. J. Lee, X. Gu, and S. Liu, “Bayesian adaptive randomization designs for targeted agent development,” Clinical Trials, vol. 7, no. 5, pp. 584–596, 2010.
[107]
C. J. Ryan, S. Halabi, S. S. Ou, N. J. Vogelzang, P. Kantoff, and E. J. Small, “Adrenal androgen levels as predictors of outcome in prostate cancer patients treated with ketoconazole plus antiandrogen withdrawal: results from a Cancer and Leukemia Group B study,” Clinical Cancer Research, vol. 13, no. 7, pp. 2030–2037, 2007.
[108]
E. Efstathiou, M. Titus, D. Tsavachidou et al., “Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone,” Journal of Clinical Oncology, vol. 30, no. 6, pp. 637–643, 2012.