全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Current Bancroftian Filariasis Elimination on Thailand-Myanmar Border: Public Health Challenges toward Postgenomic MDA Evaluation

DOI: 10.1155/2013/857935

Full-Text   Cite this paper   Add to My Lib

Abstract:

From regional and global perspectives, Thailand has progressed toward lymphatic filariasis transmission-free zone in almost entire endemic provinces, being verified by WHO by the end of 2012 after the 5-year implementation of mass drug administration (MDA) with diethylcarbamazine and albendazole as part of the National Program to Eliminate Lymphatic Filariasis (PELF) (2002–2006) and a 4-year expansion of post-MDA surveillance (2007–2010). However, Thai PELF has been challenging sensitive situations of not only border crossings of local people on Thailand-Myanmar border where focal distribution of forest- and forest fringe-related border bancroftian filariasis (BBF) is caused by nocturnally subperiodic Wuchereria bancrofti in local people living in pockets of endemic villages, but also intense cross-border migrations of Mon and Tanintharyi workers from Myanmar to Thailand who harbor nocturnally periodic W. bancrofti microfilaremic infection causing the emergence of imported bancroftian filariasis (IBF). Thus, this paper discusses the apparent issues and problems pertaining to epidemiological surveillance and postgenomic MDA evaluation for 2010–2020 convalescent BBF and IBF. In particular, the population migration linked to fitness of benzimidazole-resistant W. bancrofti population is a topic of interest in this region whether the resistance is associated with pressure of the MDA 2 drugs and the vulnerabilities epidemiologically observed in complex BBF or IBF settings. 1. Global and Regional Perspectives on Lymphatic Filariasis Elimination Life-threatening lymphatic filariasis (LF) is a mosquito-borne parasitic disease caused by two main filarial nematodes: Wuchereria bancrofti and Brugia malayi, and to a very lesser extent by Brugia timori. The disease affects about 1.3 billion people in 81 countries and territories in Asia-Pacific, Africa, and Americas; of these, estimated 120 million people are infected (Figure 1) [1]. It is estimated that about 600 million people live in endemic countries in South and East Asia (SEA) region accounting for 60% of global figure. Approximately, 60 million SEA people harboring microfilaremic infections account for a half of globally active LF burden [2]. The infection with either of these parasites in an endemic population can be eliminated as the result of large-scale control, that is, reducing the infection prevalence to the level below transmission threshold or to be considered as no longer public health problem. Thus, this potentially eradicable disease has been addressed as public health problem worldwide as the

References

[1]  WHO, “Global programme to eliminate lymphatic filariasis,” Weekly Epidemiological Record, vol. 83, no. 37, pp. 333–341, 2008.
[2]  WHO, Regional Strategic Plan for Elimination of Lymphatic Filariasis (2000–2004), Mimeographed document SEA/FIL/28.corr. 1., World Health Organization; South-East Asia Regional Office, New Delhi, India, 2001.
[3]  A. Bhumiratana, A. Intarapuk, D. Sangthong, S. Koyadun, P. Pechgit, and J. Pothikasikorn, “Molecular diagnosis and monitoring of benzimidazole susceptibility of human filariids,” in Current Topics in Tropical Medicine, A. J. Rodriguez-Morales, Ed., pp. 397–424, 2012.
[4]  E. A. Ottesen, B. O. L. Duke, M. Karam, and K. Behbehani, “Strategies and tools for the control/elimination of lymphatic filariasis,” Bulletin of the World Health Organization, vol. 75, no. 6, pp. 491–503, 1997.
[5]  D. Kyelem, G. Biswas, M. J. Bockarie et al., “Determinants of success in national programs to eliminate lymphatic filariasis: a perspective identifying essential elements and research needs,” American Journal of Tropical Medicine and Hygiene, vol. 79, no. 4, pp. 480–484, 2008.
[6]  J. O. Gyapong, V. Kumaraswami, G. Biswas, and E. A. Ottesen, “Treatment strategies underpinning the global programme to eliminate lymphatic filariasis,” Expert Opinion on Pharmacotherapy, vol. 6, no. 2, pp. 179–200, 2005.
[7]  M. J. Bockarie, M. J. Taylor, and J. O. Gyapong, “Current practices in the management of lymphatic filariasis,” Expert Review of Anti-Infectious Therapy, vol. 7, no. 5, pp. 595–605, 2009.
[8]  WHO, Progress Report 2000–2009 and Strategic Plan 2010–2020 of the Global Programme to Eliminate Lymphatic Filariasis: Halfway Towards Eliminating Lymphatic Filariasis, Mimeographed document WHO/HTM/NTD/PCT/2010. 6, World Health Organization, Geneva, Switzerland, 2010.
[9]  WHO, Regional Programme Review Group (RPRG) for Elimination of Lymphatic Filariasis in South-East Asia Region, Mimeographed document SEA-CD-211, South-East Asia Regional Office, Report of the Seventh Meeting, Jakarta, Indonesia; World Health Organization, New Delhi, India, 2010.
[10]  WHO, Guidelines for Certifying Lymphatic Filariasis Elimination (Including Discussion of Critical Issues and Rationale), Following from InFormal Consultation on Epidemiologic Approaches to Lymphatic Filariasis Elimination: Initial Assessment, Monitoring, and Certification, Atlanta, Georgia, USA 2-4 September 1998, Mimeographed document WHO/FIL/99/197, World Health Organization, Geneva, Switzerland, 1999.
[11]  WHO, Informal Consultation on Epidemiologic Approaches to Lymphatic Filariasis Elimination: Initial Assessment, Monitoring, and Certification, Atlanta, Georgia, USA 2-4 September 1998, Mimeographed document WHO/FIL/99. 195, World Health Organization, Geneva, Switzerland, 1999.
[12]  WHO, “Transmission assessment surveys in the Global Programme to Eliminate Lymphatic Filariasis: WHO position statement,” Weekly Epidemiological Record, vol. 87, no. 48, pp. 478–482, 2012.
[13]  A. Bhumiratana, S. Koyadun, S. Suvannadabba et al., “Field trial of the ICT filariasis for diagnosis of Wuchereria bancrofti infections in an endemic population of Thailand,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 30, no. 3, pp. 562–568, 1999.
[14]  A. Bhumiratana, B. Wattanakull, S. Koyadun, S. Suvannadabba, J. Rojanapremsuk, and W. Tantiwattanasup, “Relationship between male hydrocele and infection prevalences in clustered communities with uncertain transmission of Wuchereria bancrofti on the Thailand-Myanmar border,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 33, no. 1, pp. 7–17, 2002.
[15]  A. Bhumiratana, S. Koyadun, P. Satitvipawee, M. Srisuphanunt, N. Limpairojn, and G. Gaewchaiyo, “Border and imported bancroftian filariases: baseline seroprevalence in sentinel populations exposed to infections with Wuchereria bancrofti and concomitant HIV at the start of diethylcarbamazine mass treatment in Thailand,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 36, no. 2, pp. 390–407, 2005.
[16]  C. Apiwathnasorn, Y. Samung, S. Prummongkol, A. Asavanich, N. Komalamisra, and P. Mccall, “Bionomics studies of Mansonia mosquitoes inhabiting the peat swamp forest,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 37, no. 2, pp. 272–278, 2006.
[17]  S. Koyadun and A. Bhumiratana, “Surveillance of imported bancroftian filariasis after two-year multiple-dose diethylcarbamazine treatment,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 36, no. 4, pp. 822–831, 2005.
[18]  A. Bhumiratana, C. Siriaut, S. Koyadun, K. Anurat, and P. Satitvipawee, “Evaluation of a single oral dose of diethylcarbamazine 300?mg as provocative test and simultaneous treatment in Myanmar migrant workers with Wuchereria bancrofti infection in Thailand,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 35, no. 3, pp. 591–598, 2004.
[19]  A. Bhumiratana, P. Pechgit, S. Koyadun, C. Siriaut, and P. Yongyuth, “Imported bancroftian filariasis: diethylcarbamazine response and benzimidazole susceptibility of Wuchereria bancrofti in dynamic cross-border migrant population targeted by the National Program to Eliminate Lymphatic Filariasis in South Thailand,” Acta Tropica, vol. 113, no. 2, pp. 121–128, 2010.
[20]  S. Nuchprayoon, A. Junpee, and Y. Poovorawan, “Random amplified polymorphic DNA (RAPD) for differentiation between Thai and Myanmar strains of Wuchereria bancrofti,” Filaria Journal, vol. 6, article 6, 8 pages, 2007.
[21]  P. Yongyuth, S. Koyadun, N. Jaturabundit, A. Sampuch, and A. Bhumiratana, “Efficacy of a single-dose treatment with 300?mg diethylcarbamazine and a combination of 400?mg albendazole in reduction of Wuchereria bancrofti antigenemia and concomitant geohelminths in Myanmar migrants in Southern Thailand,” Journal of the Medical Association of Thailand, vol. 89, no. 8, pp. 1237–1248, 2006.
[22]  S. Nuchprayoon, C. Porksakorn, A. Junpee, V. Samprasert, and Y. Poovorawan, “Comparative assessment of an Og4C3 ELISA and ICT Filariasis Test: a study of Myanmar migrants in Thailand,” Asian Pacific Journal of Allergy and Immunology, vol. 21, no. 4, pp. 253–257, 2003.
[23]  J. Pothikasikorn, M. J. Bangs, R. Boonplueang, and T. Chareonviriyaphap, “Susceptibility of various mosquitoes of Thailand to nocturnal subperiodic Wuchereria bancrofti,” Journal of Vector Ecology, vol. 33, no. 2, pp. 313–320, 2008.
[24]  P. Pechgit, A. Intarapuk, D. Pinyoowong, and A. Bhumiratana, “Touchdown-touchup nested PCR for low-copy gene detection of benzimidazole-susceptible Wuchereria bancrofti with a Wolbachia endosymbiont imported by migrant carriers,” Experimental Parasitology, vol. 127, no. 2, pp. 559–568, 2011.
[25]  A. Bhumiratana, P. Sorosjinda-Nunthawarasilp, W. Kaewwaen, P. Maneekan, and S. Pimnon, “Malaria-associated rubber plantations in Thailand,” Travel Medicine and Infectious Disease, 2012.
[26]  W. Satimai, C. Jiraamonnimit, S. Thammapalo et al., “The impact of a national program to eliminate lymphatic filariasis in selected Myanmar immigrant communities in Bangkok and Ranong Province, Thailand,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 42, no. 5, pp. 1054–1064, 2011.
[27]  N. Pradeep Kumar, K. P. Patra, S. L. Hoti, and P. K. Das, “Genetic variability of the human filarial parasite, Wuchereria bancrofti in South India,” Acta Tropica, vol. 82, no. 1, pp. 67–76, 2002.
[28]  S. L. Hoti, R. Thangadurai, R. Dhamodharan, and P. K. Das, “Genetic heterogeneity of Wuchereria bancrofti populations at spatially hierarchical levels in Pondicherry and surrounding areas, south India,” Infection, Genetics and Evolution, vol. 8, no. 5, pp. 644–652, 2008.
[29]  S. L. Hoti, R. Dhamodharan, K. Subramaniyan, and P. K. Das, “An allele specific PCR assay for screening for drug resistance among Wuchereria bancrofti populations in India,” Indian Journal of Medical Research, vol. 130, no. 2, pp. 193–199, 2009.
[30]  A. E. Schwab, D. A. Boakye, D. Kyelem, and R. K. Prichard, “Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment,” American Journal of Tropical Medicine and Hygiene, vol. 73, no. 2, pp. 234–238, 2005.
[31]  B. J. Fennell, J. A. Naughton, J. Barlow et al., “Microtubules as antiparasitic drug targets,” Expert Opinion on Drug Discovery, vol. 3, no. 5, pp. 501–518, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133