The Mycobacterium tuberculosis (M. tb) infection is largely spread in world's population. Most infected individuals develop latent tuberculosis infection (LTBI). Tuberculin skin test (TST) and interferon-gamma release assays (IGRAs) are the available tests to detect the infection. It has been reported that some individuals take a longer period of time to develop the infection than others with the same exposure level. It is suggested that the innate immunity, in which neutrophils have an important protective role, is responsible for this. Many hematologic abnormalities have been described as common findings during severe disease. To investigate if these changes are related to LTBI development and if they interfere in TST and IFN-γ production, we recruited 88 household contacts of tuberculosis (TB) pulmonary patients and compared blood cell counts with these tests' results. There were no statistically significant changes in hemoglobin, hematocrit, platelets, global leukocyte, neutrophils, basophils, eosinophils, typical lymphocytes, atypical lymphocytes, and monocytes counts between infected and noninfected individuals. Also, there was no correlation between TST or IGRA and blood cell counts. These results suggest that blood cell counts are not LTBI markers and do not interfere in TST results or IFN-γ levels obtained by IGRA. 1. Introduction Tuberculosis (TB) continues to be a public health problem worldwide. The disease is one of the most important causes of death from infectious diseases, and the infection with Mycobacterium tuberculosis (M. tb) is also disseminated throughout world’s population [1]. Brazil has notified the highest number of TB cases in America for the last 10 years. In 2010, there were estimated 85,000 new cases of TB, and approximately 6,700 of them occurred in Bahia state [1, 2]. The transmission occurs by inhalation of droplets containing the bacilli from pulmonary TB individuals, mainly for their household contacts (HHCs) who are the most exposed to the infection. Only 5%–10% of infected individuals develop active TB, and the remaining individuals will develop latent tuberculosis infection (LTBI). The latency represents a balance between intracellular bacilli survival and host defense [3]. However, considering that the reactivation of latent infection is related to a high percentage of cases and significantly increases the transmission, diagnosing and treating people with LTBI is crucial to control the disease worldwide [4]. The most common test to detect LTBI is the tuberculin skin test (TST) that basically consists in measuring
References
[1]
WHO, Global Tuberculosis Control: WHO Report 2011, WHO, Geneva, Switzerland, 2011.
[2]
Ministério da Saúde, Secretaria de Políticas de Saúde Brazil, “DATASUS,” Ministério da Saúde, Brasilia, Brazil, http://dtr2004.saude.gov.br/sinanweb/tabnet/dh?sinannet/tuberculose/bases/tubercbrnet.def.
[3]
S. H. E. Kaufmann, “Tuberculosis: back on the Immunologists' Agenda,” Immunity, vol. 24, no. 4, pp. 351–357, 2006.
[4]
S. M. Arend, A. C. F. Engelhard, G. Groot et al., “Tuberculin skin testing compared with T-cell responses to Mycobacterium tuberculosis-specific and nonspecific antigens for detection of latent infection in persons with recent tuberculosis contact,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 6, pp. 1089–1096, 2001.
[5]
F. L. L. Cardoso, P. R. Z. Antas, A. S. Milagres et al., “T-cell responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 in Brazilian tuberculosis patients,” Infection and Immunity, vol. 70, no. 12, pp. 6707–6714, 2002.
[6]
H. Kunst, “Diagnosis of latent tuberculosis infection: the potential role of new technologies,” Respiratory Medicine, vol. 100, no. 12, pp. 2098–2106, 2006.
[7]
T. F. Pais, R. A. Silva, B. Smedegaard, R. Appelberg, and P. Andersen, “Analysis of T cells recruited during delayed-type hypersensitivity to purified protein derivative (PPD) versus challenge with tuberculosis infection,” Immunology, vol. 95, no. 1, pp. 69–75, 1998.
[8]
T. Mori, M. Sakatani, F. Yamagishi et al., “Specific detection of tuberculosis infection: an interferon-γ-based assay using new antigens,” American Journal of Respiratory and Critical Care Medicine, vol. 170, no. 1, pp. 59–64, 2004.
[9]
C. R. Horsburgh Jr., “Priorities for the treatment of latent tuberculosis infection in the United States,” The New England Journal of Medicine, vol. 350, no. 20, pp. 2060–2115, 2004.
[10]
I. Brock, M. Ruhwald, B. Lundgren, H. Westh, L. R. Mathiesen, and P. Ravn, “Latent tuberculosis in HIV positive, diagnosed by the M. tuberculosis specific interferon-γ test,” Respiratory Research, vol. 7, article 56, 2006.
[11]
A. R. Martineau, S. M. Newton, K. A. Wilkinson et al., “Neutrophil-mediated innate immune resistance to mycobacteria,” Journal of Clinical Investigation, vol. 117, no. 7, pp. 1988–1994, 2007.
[12]
R. M. Glasser, R. I. Walker, and J. C. Herion, “The significance of hematologic abnormalities in patients with tuberculosis,” Archives of Internal Medicine, vol. 125, no. 4, pp. 691–695, 1970.
[13]
C. D. W. Morris, A. R. Bird, and H. Nell, “The haematological and biochemical changes in severe pulmonary tuberculosis,” Quarterly Journal of Medicine, vol. 73, no. 272, pp. 1151–1159, 1989.
[14]
N. J. DiBella, B. D. Buchanan, and C. H. Koontz, “Disseminated atypical tuberculosis antedating the cliical onset of neoplasia,” Cancer, vol. 40, no. 3, pp. 1276–1279, 1977.
[15]
ATS, “Targeted tuberculin testing and treatment of latent tuberculosis infection. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. This is a Joint Statement of the American Thoracic Society (ATS) and the Centers for Disease Control and Prevention (CDC,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 4, part 2, pp. S221–S247, 2000.
[16]
G. H. Mazurek, J. Jereb, P. Lobue, M. F. Iademarco, B. Metchock, and A. Vernon, “Guidelines for using the QuantiFERON-TB Gold test for detecting Mycobacterium tuberculosis infection, United States,” MMWR. Recommendations and Reports, vol. 54, no. 15, pp. 49–55, 2005.
[17]
K. C. Smithburn, F. R. Sabin, and L. E. Hummel, “Haematological studies in experimental tuberculosis: variations in the blood cells of rabbits inoculated with cultures differing in virulence,” American Review of Tuberculosis, vol. 36, pp. 673–691, 1937.
[18]
E. Raby, M. Moyo, A. Devendra et al., “The effects of HIV on the sensitivity of a whole blood IFN-γ release assay in Zambian adults with active tuberculosis,” PLoS ONE, vol. 3, no. 6, Article ID e2489, 2008.
[19]
N. J. Talati, U. Seybold, B. Humphrey et al., “Poor concordance between interferon-γ release assays and tuberculin skin tests in diagnosis of latent tuberculosis infection among HIV-infected individuals,” BMC Infectious Diseases, vol. 9, article 15, 2009.
[20]
S. W. Lee, Y. A. Kang, Y. S. Yoon et al., “The prevalence and evolution of anemia associated with tuberculosis,” Journal of Korean Medical Science, vol. 21, no. 6, pp. 1028–1032, 2006.
[21]
R. A. M. Breen, O. Leonard, F. M. R. Perrin et al., “How good are systemic symptoms and blood inflammatory markers at detecting individuals with tuberculosis?” The International Journal of Tuberculosis and Lung Disease, vol. 12, no. 1, pp. 44–49, 2008.
[22]
C. A. Doan and O. Bierbaum, “Studies with artificial fever in experimental tuberculosis,” The Ohio Journal of Science, vol. 36, no. 3, pp. 117–122, 1936.
[23]
J. Pedrosa, B. M. Saunders, R. Appelberg, I. M. Orme, M. T. Silva, and A. M. Cooper, “Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice,” Infection and Immunity, vol. 68, no. 2, pp. 577–583, 2000.
[24]
N. A. Fanger, C. Liu, P. M. Guyre et al., “Activation of human T cells by major histocompatability complex class II expressing neutrophils: proliferation in the presence of superantigen, but not tetanus toxoid,” Blood, vol. 89, no. 11, pp. 4128–4135, 1997.
[25]
T. Kasama, R. M. Strieter, N. W. Lukacs, P. M. Lincoln, M. D. Burdick, and S. L. Kunkel, “Interferon gamma modulates the expression of neutrophil-derived chemokines,” Journal of Investigative Medicine, vol. 43, no. 1, pp. 58–67, 1995.
[26]
N. S. Potter and C. V. Harding, “Neutrophils process exogenous bacteria via an alternate class I MHC processing pathway for presentation of peptides to T lymphocytes,” Journal of Immunology, vol. 167, no. 5, pp. 2538–2546, 2001.
[27]
D. D. Riedel and S. H. E. Kaufmann, “Chemokine secretion by human polymorphonuclear granulocytes after stimulation with Mycobacterium tuberculosis and lipoarabinomannan,” Infection and Immunity, vol. 65, no. 11, pp. 4620–4623, 1997.
[28]
P. Seiler, P. Aichele, S. Bandermann et al., “Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines,” European Journal of Immunology, vol. 33, no. 10, pp. 2676–2686, 2003.
[29]
A. E. Brown, T. J. Holzer, and B. R. Andersen, “Capacity of human neutrophils to kill Mycobacterium tuberculosis,” Journal of Infectious Diseases, vol. 156, no. 6, pp. 985–989, 1987.
[30]
G. S. Jones, H. J. Amirault, and B. R. Andersen, “Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process,” Journal of Infectious Diseases, vol. 162, no. 3, pp. 700–704, 1990.
[31]
M. T. Silva, M. N. T. Silva, and R. Appelberg, “Neutrophil-macrophage cooperation in the host defence against mycobacterial infections,” Microbial Pathogenesis, vol. 6, no. 5, pp. 369–380, 1989.
[32]
B. H. Tan, C. Meinken, M. Bastian et al., “Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens,” Journal of Immunology, vol. 177, no. 3, pp. 1864–1871, 2006.
[33]
M. Denis and B. R. Andersen, “Human neutrophils, activated with cytokines or not, do not kill virulent Mycobacterium tuberculosis,” Journal of Infectious Diseases, vol. 163, no. 4, pp. 919–920, 1991.
[34]
A. Cruz, S. A. Khader, E. Torrado et al., “Cutting edge: IFN-γ regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection,” Journal of Immunology, vol. 177, no. 3, pp. 1416–1420, 2006.
[35]
P. Andersen, M. E. Munk, J. M. Pollock, and T. M. Doherty, “Specific immune-based diagnosis of tuberculosis,” The Lancet, vol. 356, no. 9235, pp. 1099–1104, 2000.
[36]
A. Machado, K. Emodi, I. Takenami et al., “Analysis of discordance between the tuberculin skin test and the interferon-gamma release assay,” The International Journal of Tuberculosis and Lung Disease, vol. 13, no. 4, pp. 446–453, 2009.
[37]
S. Sopper, D. Nierwetberg, A. Halbach et al., “Impact of simian immunodeficiency virus (SIV) infection on lymphocyte numbers and T-cell turnover in different organs of rhesus monkeys,” Blood, vol. 101, no. 4, pp. 1213–1219, 2003.