Amphibian populations are declining throughout the world, but most of the susceptible species possess particular biological attributes. Understanding these traits plus the environmental factors responsible for declines greatly aids conservation prioritization and planning. This paper examines the natural history observations and ecological characteristics of Callulina dawida, a frog endemic to the montane forests of the Taita Hills, Kenya. Sampling was accomplished by use of standardized pitfall trapping, transects, and time-limited searches. Mean monthly temperature and elevation significantly influenced the species distribution and abundance but mean monthly rainfall did not. The species was rare or absent during the cold season and its abundance increased with elevation. Breeding occurred during the long dry season (June to October) with juveniles being abundant between January and March. Available evidence shows that this species deposits a cluster of large yolk-rich eggs on the forest floor with maternal care and direct development. Its occurrence only within highly fragmented indigenous forests makes the species worth listing as critically endangered. To conserve this species, all remaining indigenous forest fragments including those communally or privately owned should be preserved and connected through planting of indigenous trees along stream valleys. In addition, the exotic tree plantations should be replaced with indigenous trees to restore the species habitat. 1. Introduction Amphibians are more susceptible to changes in the local environment than other vertebrates [1, 2] because of their permeable skin that absorbs water and oxygen, and their lives depend on clean environmental resources. Almost a third of known amphibian species worldwide are already threatened by a combination of habitat loss, climate change, ultraviolet radiation, diseases, pathogens, global warming, overexploitation, pet trade, environmental pollution, and invasive species [2, 7]. Habitat loss and fragmentation [8, 9] are the major causes of the observed global amphibian population declines [3, 10, 11] and is most prevalent in species-rich tropical regions [12]. Among the highly fragmented and threatened habitats is the east African montane forests of the Eastern Arc Mountains (EAM); with the Taita Hills forests being the most fragmented and threatened [13, 14]. Animal populations within such isolated small fragments are ecologically vulnerable to genetic loss due to inbreeding and genetic drift via “bottlenecks” and “founders’ effects” [3, 15, 16]. The rate at which
References
[1]
K. Roelants, D. J. Gower, M. Wilkinson et al., “Global patterns of diversification in the history of modern amphibians,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 887–892, 2007.
[2]
S. N. Stuart, J. S. Chanson, N. A. Cox et al., “Status and trends of amphibian declines and extinctions worldwide,” Science, vol. 306, no. 5702, pp. 1783–1786, 2004.
[3]
S. A. Cushman, “Effects of habitat loss and fragmentation on amphibians: a review and prospectus,” Biological Conservation, vol. 128, no. 2, pp. 231–240, 2006.
[4]
“Amphibian conservation action plan,” in Proceedings of the IUCN/SSC Amphibian Conservation Summit, C. Gascon, J. P. Collins, R. D. Moore, D. R. Church, J. E. Mckay, and J. R. Mendelson III, Eds., The World Conservation Union (IUCN), Gland, Switzerland, 2005.
[5]
J. R. Mendelson Jr., K. R. Lips, R. W. Gagliardo, et al., “Biodiversity: confronting amphibian declines and extinctions,” Science, vol. 313, p. 48, 2006.
[6]
S. N. Stuart, M. Hoffmann, J. S. Chanson et al., Eds., Threatened Amphibians of the World, Lynx Edicions, in Association with IUCN, Conservation International and NatureServe, Washington, DC, USA, 2008.
[7]
J. D. Taylor and J. C. Jones, “Quantifying amphibian richness in South-eastern forests,” Proceedings of the Annual Conference of Southeast Association of Fish and Wildlife Agencies, vol. 56, pp. 3021–311, 2002.
[8]
L. Fahrig, “Effect of habitat fragmentation on the extinction threshold: a synthesis,” Ecological Applications, vol. 12, no. 2, pp. 346–353, 2002.
[9]
L. Fahrig, “Effects of habitat fragmentation on biodiversity,” Annual Review of Ecology, Evolution, and Systematics, vol. 34, pp. 487–515, 2003.
[10]
K. E. Bell and M. A. Donnelly, “Influence of forest fragmentation on community structure of frogs and lizards in northeastern Costa Rica,” Conservation Biology, vol. 20, no. 6, pp. 1750–1760, 2006.
[11]
W. C. Funk, A. E. Greene, P. S. Corn, and F. W. Allendorf, “High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation,” Biology Letters, vol. 1, no. 1, pp. 13–16, 2005.
[12]
C. S. Jha, L. Goparaju, A. Tripathi, B. Gharai, A. S. Raghubanshi, and J. S. Singh, “Forest fragmentation and its impact on species diversity: an analysis using remote sensing and GIS,” Biodiversity and Conservation, vol. 14, no. 7, pp. 1681–1698, 2005.
[13]
W. Newmark, “Forest area, fragmentation and loss in the Eastern Arc Mountains; implications for the conservation of biological diversity,” Journal of East African Natural History, vol. 87, pp. 29–36, 1998.
[14]
N. D. Burgess, T. M. Butynski, N. J. Cordeiro et al., “The biological importance of the Eastern Arc Mountains of Tanzania and Kenya,” Biological Conservation, vol. 134, no. 2, pp. 209–231, 2007.
[15]
T. J. C. Beebee, “Conservation genetics of amphibians,” Heredity, vol. 95, no. 6, pp. 423–427, 2005.
[16]
I. F. Spellerberg, Monitoring Ecological Change, Cambridge University Press, Cambridge, UK, 1991.
[17]
C. K. Dodd and B. S. Cade, “Movement patterns and the conservation of amphibians breeding in small, temporary wetlands,” Conservation Biology, vol. 12, no. 2, pp. 331–339, 1998.
[18]
J. Bielby, N. Cooper, A. A. Cunningham, T. W. J. Garner , and A. Purvis, “Predicting susceptibility to future declines in world's frogs,” Conservation Letters, vol. 1, no. 2, pp. 82–90, 2008.
[19]
B. R. Murray and G. C. Hose, “Life-history and ecological correlates of decline and extinction in the endemic Australian frog fauna,” Austral Ecology, vol. 30, no. 5, pp. 564–571, 2005.
[20]
S. A. Budischak, J. M. Hester, S. J. Price, and M. E. Dorcas, “Natural history of Terrapene carolina (Box Turtles) in an urbanized landscape,” Southeastern Naturalist, vol. 5, no. 2, pp. 191–204, 2006.
[21]
M. A. Donnelly and C. Guyer, “Patterns of reproduction and habitat use in an assemblage of neotropical hylid frogs,” Oecologia, vol. 98, no. 3-4, pp. 291–302, 1994.
[22]
D. R. Frost, Amphibian Species of the World: An Online Reference, Version 5.0. Electronic database accessible, American Museum of Natural History, New York, NY, USA, 2007.
[23]
T. Barbour and A. Loveridge, “A comparative study of the herpetological fauna of the Uluguru and Usambara mountains, Tanganyika Territory with description of new species,” Memoirs of Museum of Comparative Zoology Harvard, vol. 6, no. 2, pp. 178–261, 1928.
[24]
J. C. Poynton and D. G. Broadley, “A new species of Probrevicepss (Amphibia) from Rhodesia,” Arnoldia, vol. 3, pp. 1–3, 1967.
[25]
D. R. Frost, T. Grant, J. Faivovich et al., “The amphibian tree of life,” Bulletin of the American Museum of Natural History, no. 297, pp. 1–370, 2006.
[26]
R. O. De Sá, S. P. Loader, and A. Channing, “A new species of Callulina (Anura: Microhylidae) from the West Usambara Mountains, Tanzania,” Journal of Herpetology, vol. 38, no. 2, pp. 219–224, 2004.
[27]
M. Menegon, N. Doggart, and N. Owen, “The Nguru Mountains of Tanzania, an outstanding hotspot of herpetofaunal diversity,” Acta Herpetologica, vol. 3, no. 2, pp. 107–127, 2008.
[28]
S. P. Loader, D. J. Gower, W. Ngalason, and M. Menegon, “Three new species of Callulina (Amphibia: Anura: Brevicipitidae) highlight local endemism and conservation plight of Africa's Eastern Arc forests,” Zoological Journal of the Linnean Society, vol. 160, no. 3, pp. 496–514, 2010.
[29]
M.-O. R?del and R. Ernst, “Measuring and monitoring amphibian diversity in tropical forests. I. An evaluation of methods with recommendations for standardization,” Ecotropica, vol. 10, pp. 1–14, 2004.
[30]
M. Veith, S. L?tters, F. Andreone, and M.-O. R?del, “Measuring and monitoring amphibians diversity in tropical forests. II. Estimating species richness from standardized transect censing,” Ecotropica, vol. 10, pp. 85–99, 2004.
[31]
W. R. Heyer, M. A. Donnelly, M. R. W. Diarmid, L.-A. C. Hayek, and M. S. Foster, Eds., Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians, Smithsonian Institution Press, Washington, DC, USA, 1994.
[32]
D. R. Karns, “Field herpetology: methods for the study of amphibians and reptiles in Minnesota,” Occasional Paper 18, James Ford Bell Museum of Natural History, University of Minnesota, 1986.
[33]
StatSoft, STATISTICA Data analysis software system, Version 6.0. StatSoft, Oklahoma, 2001.
[34]
T. Brooks, L. Lens, J. Barnes, R. Barnes, J. K. Kihuria, and C. Wilder, “The conservation status of the forest birds of the Taita Hills, Kenya,” Bird Conservation International, vol. 8, no. 2, pp. 119–139, 1998.
[35]
R. J?tzold and H. Schmidt, Farm Management Handbook of Kenya. Vol. II: Natural Conditions and Farm Management Information. Part B: Central Kenya (Rift Valley and Central Provinces), The Kenyan Ministry of Agriculture, in Cooperation with the German Agricultural Team (GAT) of the German Agency for Technical Cooperation (GTZ), 1983.
[36]
P. K. Malonza, Amphibian biodiversity in Taita Hills, Kenya, Ph.D. thesis, University of Johness-Gutenberg University, Mainz, Germany, 2008.
[37]
G. J. Measey, M. Smita, R. S. Beyo, and O. V. Oommen, “Year-round spermatogenic activity in an oviparous subterranean caecilian, Boulengerula taitanus Loveridge 1935 (Amphibia Gymnophiona Caeciliidae),” Tropical Zoology, vol. 21, no. 1, pp. 109–122, 2008.
[38]
C. Morrison and J. M. Hero, “Geographic variation in life-history characteristics of amphibians: a review,” Journal of Animal Ecology, vol. 72, no. 2, pp. 270–279, 2003.
[39]
S. J. Lai, Y. C. Kam, and Y. S. Lin, “Elevational variation in reproductive and life history traits of Sauter's frog Rana sauteri Boulenger, 1909 in Taiwan,” Zoological Studies, vol. 42, no. 1, pp. 193–202, 2003.
[40]
C. A. Navas, “Patterns of distribution of anurans in high Andean tropical elevations: insights from integrating biogeography and evolutionary physiology,” Integrative and Comparative Biology, vol. 46, no. 1, pp. 82–91, 2006.
[41]
K. Summers, C. S. McKeon, H. Heying, J. Hall, and W. Patrick, “Social and environmental influences on egg size evolution in frogs,” Journal of Zoology, vol. 271, no. 2, pp. 225–232, 2007.
[42]
W. E. Duellman and L. Trueb, Biology of Amphibians, The John Hopkins University Press, Baltimore, Md, USA, 1994.
[43]
U. Hofer, L. F. Bersier, and D. Borcard, “Ecotones and gradient as determinants of herpetofaunal community structure in the primary forest of Mount Kupe, Cameroon,” Journal of Tropical Ecology, vol. 16, no. 4, pp. 517–533, 2000.
[44]
S. P. Loader, G. J. Measey, R. O. De Sá, and P. K. Malonza, “A new brevicipitid species (Brevicipitidae: Callulina) from the fragmented forests of the Taita Hills, Kenya,” Zootaxa, no. 2123, pp. 55–68, 2009.
[45]
H. Müller, S. P. Loader, W. Ngalason, K. M. Howell, and D. J. Gower, “Reproduction in Brevicipitid frogs (Amphibia: Anura: Brevicipitidae): evidence from Probreviceps m. macrodactylus,” Copeia, no. 3, pp. 726–733, 2007.
[46]
IUCN, IUCN Red List Categories and Criteria (version 3.1), IUCN, Conservation International, & NatureServe. Global Amphibian Assessment, Gland, Switzerland, 2001, http://www.globalamphibians.org.