全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Zoology  2012 

First Reproductive Observations for Herpele Peters, 1880 (Amphibia: Gymnophiona: Herpelidae): Evidence of Extended Parental Care and Maternal Dermatophagy in H. squalostoma (Stutchbury, 1836)

DOI: 10.5402/2012/269690

Full-Text   Cite this paper   Add to My Lib

Abstract:

An adult (presumably female) Herpele squalostoma was found attending 16 young in Cameroon. Four young that were preserved one day after collection have multicusped teeth and skin-like material in their gut. The adult and remaining young were maintained in captivity without provision of food for one month. During this period the young gained more than 10% in mass. Twenty-nine days after collection one additional young was preserved, this has adult-like dentition. We conclude that H. squalostoma resembles the oviparous caecilians Boulengerula taitanus and Siphonops annulatus in having young that receive extended parental care and that remove and eat the stratum corneum of maternal skin using specialized deciduous teeth. This discovery matches a prediction that maternal dermatophagy is widespread (and homologous) among teresomatan caecilians. 1. Introduction The reproductive biology of caecilian amphibians (Gymnophiona) is remarkably diverse for a clade of fewer than 200 extant nominal species. In addition to both oviparity (with larvae or direct development) and viviparity, there is a range of types and duration of parental care, some of which have been only recently discovered [1–4]. Establishing evolutionary patterns in the reproductive biology of caecilians has been challenging because little to no information is available for most species and some genera [5, 6]. Kupfer et al. [3] described a form of parental care in the oviparous, direct-developing, East African, herpelid caecilian Boulengerula taitanus. In this species, altricial hatchlings periodically remove and ingest the outer layer (stratum corneum) of hypertrophied skin of attending females using distinctive multicusped teeth that are shed when the young assume an independent existence. Wilkinson et al. [7] reported this maternal dermatophagy in another oviparous, direct-developing caecilian, the South American siphonopid Siphonops annulatus. Based on the similarity of the syndrome of morphological and behavioural traits characterizing the maternal dermatophagy, Wilkinson et al. [7] hypothesized that it is homologous in the two species and predicted that skin feeding also occurs in many oviparous, direct-developing teresomatan [8] caecilians. Here we provide the first report of reproductive natural history data for the central African herpelid genus Herpele. An adult H. squalostoma was found attending a clutch of young. Study of this clutch and data from independent H. squalostoma suggest that this species is oviparous and also has maternal dermatophagy. 2. Materials and Methods The newly

References

[1]  M. H. Wake, “The reproductive biology of caecilians: an evolutionary perspective,” in Reproductive Biology of Amphibians, D. H. Taylor and S. I. Guttman, Eds., pp. 73–101, Plenum Press, New York, NY, USA, 1976.
[2]  S. P. Loader, M. Wilkinson, D. J. Gower, and C. A. Msuya, “A remarkable young Scolecomorphus vittatus (Amphibia: Gymnophiona: Scolecomorphidae) from the North Pare Mountains, Tanzania,” Journal of Zoology, vol. 259, no. 1, pp. 93–101, 2003.
[3]  A. Kupfer, H. Müller, M. M. Antoniazzi et al., “Parental investment by skin feeding in a caecilian amphibian,” Nature, vol. 440, no. 7086, pp. 926–929, 2006.
[4]  H. Müller, M. Wilkinson, S. P. Loader, C. S. Wirkner, and D. J. Gower, “Morphology and function of the head in foetal and juvenile Scolecomorphus kirkii (Amphibia: Gymnophiona: Scolecomorphidae),” Biological Journal of the Linnean Society, vol. 96, no. 3, pp. 491–504, 2009.
[5]  M. Wilkinson and R. A. Nussbaum, “Caecilian viviparity and amniote origins,” Journal of Natural History, vol. 32, no. 9, pp. 1403–1409, 1998.
[6]  D. J. Gower, V. Giri, M. S. Dharne, and Y. S. Shouche, “Frequency of independent origins of viviparity among caecilians (Gymnophiona): evidence from the first “live-bearing” Asian amphibian,” Journal of Evolutionary Biology, vol. 21, no. 5, pp. 1220–1226, 2008.
[7]  M. Wilkinson, A. Kupfer, R. Marques-Porto, H. Jeffkins, M. M. Antoniazzi, and C. Jared, “One hundred million years of skin feeding? Extended parental care in a Neotropical caecilian (Amphibia: Gymnophiona),” Biology Letters, vol. 4, no. 4, pp. 358–361, 2008.
[8]  M. Wilkinson and R. A. Nussbaum, “Caecilian phylogeny and classification,” in Reproductive Biology and Phylogeny of Gymnophiona, J.-M. Exbrayat, Ed., pp. 39–78, Science Publishers, Enfield, NH, USA, 2006.
[9]  M. Wilkinson, D. S. Mauro, E. Sherratt, and D. J. Gower, “A nine-family classification of caecilians (Amphibia: Gymnophiona),” Zootaxa, no. 2874, pp. 41–64, 2011.
[10]  R. G. Kamei, D. San Mauro, D. J. Gower et al., “Discovery of a new family of amphibians from Northeast India with ancient links to Africa,” Proceedings of the Royal Society, vol. 279, no. 1737, pp. 2396–2401, 2012.
[11]  W. Dubbin, Soils, The Natural History Museum, London, UK, 2001.
[12]  M. Wilkinson, H. Müller, and D. J. Gower, “On Herpele multiplicata (Amphibia: Gymnophiona Caeciliidae),” African Journal of Herpetology, vol. 52, no. 2, pp. 119–122, 2003.
[13]  R. A. Nussbaum and H. Hinkel, “Revision of East African caecilians of the genera Afrocaecilia Taylor and Boulengerula Tornier (Amphibia: Gymnophiona: Caeciliaidae),” Copeia, vol. 1994, no. 3, pp. 750–760, 1994.
[14]  A. Kupfer, M. Wilkinson, D. J. Gower, H. Müller, and R. Jehle, “Care and parentage in a skin-feeding caecilian amphibian,” Journal of Experimental Zoology A, vol. 309, no. 8, pp. 460–467, 2008.
[15]  D. J. Gower and M. Wilkinson, “Conservation biology of caecilian amphibians,” Conservation Biology, vol. 19, no. 1, pp. 45–55, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133