Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in sunscreens, biosensors, food additives, pigments, rubber manufacture, and electronic materials. With the wide application of ZnO-NPs, concern has been raised about its unintentional health and environmental impacts. This study investigates the toxic effects of ZnO-NPs in human lung cells. In order to assess toxicity, human lung epithelial cells (L-132) were exposed to dispersion of 50?nm ZnO-NPs at concentrations of 5, 25, 50, and 100?μg/mL for 24?h. The toxicity was evaluated by observing changes in cell morphology, cell viability, oxidative stress parameters, DNA damage analysis, and gene expression. Exposure to 50?nm ZnO-NPs at concentrations between 5 and 100?μg/mL decreased cell viability in a concentration-dependent manner. Morphological examination revealed cell shrinkage, nuclear condensation, and formation of apoptotic bodies. The oxidative stress parameters revealed significant depletion of GSH level and increase in ROS levels suggesting generation of oxidative stress. ZnO-NPs exposure caused DNA fragmentation demonstrating apoptotic type of cell death. ZnO-NPs increased the expression of metallothionein gene, which is considered as a biomarker in metal-induced toxicity. To summarize, ZnO-NPs cause toxicity in human lung cells possibly through oxidative stress-induced apoptosis. 1. Introduction Over the past decade the ability to engineer and produce materials at the nano- or near-atomic scale has triggered rapid product development due to their new interesting properties that were not previously seen at scales above the micrometer. Industrial applications using nanoparticles have resulted in an almost exponentially growing demand for nanosized materials. Due to increasing use of nanoparticles in variety of consumer goods, humans are constantly exposed to such nanomaterials besides exposure at production sites [1–5]. Unintended exposure to nanomaterials may occur via inhalation, dermal exposure, or gastrointestinal tract absorption and may pose a great risk [6, 7]. Despite their wide application, little is known about their effect on human health and environment. Zinc oxide (ZnO) is among the most commonly utilized group of nanomaterials and has wide-ranging applications [8]. As a well-known photocatalyst, ZnO has received much attention in the degradation and complete mineralization of environmental pollutants [9, 10]. ZnO nanoparticles (ZnO-NPs) are used in industrial products including cosmetics, paints, and medical materials. ZnO-NPs have external uses as antibacterial agents in
References
[1]
V. L. Colvin, “The potential environmental impact of engineered nanomaterials,” Nature Biotechnology, vol. 21, no. 10, pp. 1166–1170, 2003.
[2]
E. Oberd?rster, “Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass,” Environmental Health Perspectives, vol. 112, no. 10, pp. 1058–1062, 2004.
[3]
M. N. Rittner, “Market analysis of nanaostructured materials,” American Ceramic Society Bulletin, vol. 81, no. 3, pp. 33–36, 2002.
[4]
R. F. Service, “Is nanotechnology dangerous?” Science, vol. 290, pp. 1526–1527, 2000.
[5]
D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb, “Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats,” Toxicological Sciences, vol. 77, no. 1, pp. 117–125, 2004.
[6]
P. J. A. Borm, D. Robbins, S. Haubold et al., “The potential risks of nanomaterials: a review carried out for ECETOC,” Particle and Fibre Toxicology, vol. 3, article 11, 2006.
[7]
V. Stone, H. Johnston, and M. J. D. Clift, “Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions,” IEEE Transactions on Nanobioscience, vol. 6, no. 4, pp. 331–340, 2007.
[8]
Z. Fan and J. G. Lu, “Zinc oxide nanostructures: synthesis and properties,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 10, pp. 1561–1573, 2005.
[9]
M. C. Yeber, J. Rodríguez, J. Freer, N. Durán, and H. D. Mansilla, “Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO,” Chemosphere, vol. 41, no. 8, pp. 1193–1197, 2000.
[10]
F. Xu, P. Zhang, A. Navrotsky et al., “Hierarchically assembled porous ZnO nanoparticles: synthesis, surface energy, and photocatalytic activity,” Chemistry of Materials, vol. 19, no. 23, pp. 5680–5686, 2007.
[11]
N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, “Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms,” FEMS Microbiology Letters, vol. 279, no. 1, pp. 71–76, 2008.
[12]
A. S. Prasad, “Clinical, immunological, anti-inflammatory and antioxidant roles of zinc,” Experimental Gerontology, vol. 43, no. 5, pp. 370–377, 2008.
[13]
M. J. Rincker, G. M. Hill, J. E. Link, A. M. Meyer, and J. E. Rowntree, “Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs,” Journal of Animal Science, vol. 83, no. 12, pp. 2762–2774, 2005.
[14]
M. Horie, K. Nishio, K. Fujita et al., “Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells,” Chemical Research in Toxicology, vol. 22, no. 3, pp. 543–553, 2009.
[15]
H. A. Jeng and J. Swanson, “Toxicity of metal oxide nanoparticles in mammalian cells,” Journal of Environmental Science and Health A, vol. 41, no. 12, pp. 2699–2711, 2006.
[16]
J. C. K. Lai, M. B. Lai, S. Jandhyam et al., “Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts,” International Journal of Nanomedicine, vol. 3, no. 4, pp. 533–545, 2008.
[17]
D. Li and H. Haneda, “Morphologies of zinc oxide particles and their effects on photocatalysis,” Chemosphere, vol. 51, no. 2, pp. 129–137, 2003.
[18]
T. J. Brunner, P. Wick, P. Manser et al., “In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility,” Environmental Science and Technology, vol. 40, no. 14, pp. 4374–4381, 2006.
[19]
J. W. Card, D. C. Zeldin, J. C. Bonner, and E. R. Nestmann, “Pulmonary applications and toxicity of engineered nanoparticles,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 295, no. 3, pp. L400–L411, 2008.
[20]
P. H. M. Hoet, I. Brüske-Hohlfeld, and O. V. Salata, “Nanoparticles—known and unknown health risks,” Journal of Nanobiotechnology, vol. 2, article 12, 2004.
[21]
R. Bertholf, “Zinc,” in Handbook on Toxicity of Inorganic Compounds, H. G. Seiler and H. Siegel, Eds., pp. 788–800, Marcel Dekker Inc, New York, NY, USA, 1988.
[22]
B. L. Vallee, “The function of metallothionein,” Neurochemistry International, vol. 27, no. 1, pp. 23–33, 1995.
[23]
B. L. Vallee and K. H. Falchuk, “The biochemical basis of zinc physiology,” Physiological Reviews, vol. 73, no. 1, pp. 79–118, 1993.
[24]
W. S. Beckett, D. F. Chalupa, A. Pauly-Brown et al., “Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 10, pp. 1129–1135, 2005.
[25]
J. M. Fine, T. Gordon, L. C. Chen, P. Kinney, G. Falcone, and W. S. Beckett, “Metal fume fever: characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value,” Journal of Occupational and Environmental Medicine, vol. 39, no. 8, pp. 722–726, 1997.
[26]
H. L. Karlsson, P. Cronholm, J. Gustafsson, and L. M?ller, “Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes,” Chemical Research in Toxicology, vol. 21, no. 9, pp. 1726–1732, 2008.
[27]
S. K. Baird, T. Kurz, and U. T. Brunk, “Metallothionein protects against oxidative stress-induced lysosomal destabilization,” Biochemical Journal, vol. 394, no. 1, pp. 275–283, 2006.
[28]
T. H. Mahato, G. K. Prasad, B. Singh, J. Acharya, A. R. Srivastava, and R. Vijayaraghavan, “Nanocrystalline zinc oxide for the decontamination of sarin,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 928–932, 2009.
[29]
M. Ahamed, M. J. Akhtar, M. Raja et al., “ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 7, no. 6, pp. 904–913, 2011.
[30]
F. Denizot and R. Lang, “Rapid colorimetric assay for cell growth and survival—modifications to the tetrazolium dye procedure giving improved sensitivity and reliability,” Journal of Immunological Methods, vol. 89, no. 2, pp. 271–277, 1986.
[31]
H. Wang and J. A. Joseph, “Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader,” Free Radical Biology and Medicine, vol. 27, no. 5-6, pp. 612–616, 1999.
[32]
P. J. Hissin and R. Hilf, “A fluorometric method for determination of oxidized and reduced glutathione in tissues,” Analytical Biochemistry, vol. 74, no. 1, pp. 214–226, 1976.
[33]
R. T. Allen, W. J. Hunter III, and D. K. Agrawal, “Morphological and biochemical characterization and analysis of apoptosis,” Journal of Pharmacological and Toxicological Methods, vol. 37, no. 4, pp. 215–228, 1997.
[34]
A. Calcabrini, S. Meschini, M. Marra et al., “Fine environmental particulate engenders alterations in human lung epithelial A549 cells,” Environmental Research, vol. 95, no. 1, pp. 82–91, 2004.
[35]
P. J. Thornalley and M. Vasak, “Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals,” Biochimica et Biophysica Acta, vol. 827, no. 1, pp. 36–44, 1985.
[36]
R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti, and F. Fiévet, “Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium,” Nano Letters, vol. 6, no. 4, pp. 866–870, 2006.
[37]
C. Hanley, J. Layne, A. Punnoose et al., “Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles,” Nanotechnology, vol. 19, no. 29, Article ID 295103, 2008.
[38]
M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan, “Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 7, no. 2, pp. 184–192, 2011.
[39]
X. Deng, Q. Luan, W. Chen et al., “Nanosized zinc oxide particles induce neural stem cell apoptosis,” Nanotechnology, vol. 20, no. 11, Article ID 115101, 2009.
[40]
S. Lanone, F. Rogerieux, J. Geys et al., “Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines,” Particle and Fibre Toxicology, vol. 6, article 14, 2009.
[41]
J. Zhao, L. Xu, T. Zhang, G. Ren, and Z. Yang, “Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons,” NeuroToxicology, vol. 30, no. 2, pp. 220–230, 2009.
[42]
K. Donaldson, V. Stone, A. Seaton, and W. MacNee, “Ambient particle inhalation and the cardiovascular system: potential mechanisms,” Environmental Health Perspectives, vol. 109, supplement 4, pp. 523–527, 2001.
[43]
A. Nel, T. Xia, L. M?dler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006.
[44]
Y.-M. Zhou, C.-Y. Zhong, I. M. Kennedy, V. J. Leppert, and K. E. Pinkerton, “Oxidative stress and NFκB activation in the lungs of rats: a synergistic interaction between soot and iron particles,” Toxicology and Applied Pharmacology, vol. 190, no. 2, pp. 157–169, 2003.
[45]
J. F. Curtin, M. Donovan, and T. G. Cotter, “Regulation and measurement of oxidative stress in apoptosis,” Journal of Immunological Methods, vol. 265, no. 1-2, pp. 49–72, 2002.
[46]
F. Oberhammer, J. W. Wilson, C. Dive et al., “Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50?kb fragments prior to or in the absence of internucleosomal fragmentation,” EMBO Journal, vol. 12, no. 9, pp. 3679–3684, 1993.
[47]
M. T.-K. Tsui and W.-X. Wang, “Biokinetics and tolerance development of toxic metals in Daphnia magna,” Environmental Toxicology and Chemistry, vol. 26, no. 5, pp. 1023–1032, 2007.
[48]
K.-S. Min, “The physiological significance of metallothionein in oxidative stress,” Yakugaku Zasshi, vol. 127, no. 4, pp. 695–702, 2007.