|
ISRN Physiology 2013
Neurophysiological Basis of Sleep’s Function on Memory and CognitionDOI: 10.1155/2013/619319 Abstract: A wealth of recent studies support a function of sleep on memory and cognitive processing. At a physiological level, sleep supports memory in a number of ways including neural replay and enhanced plasticity in the context of reduced ongoing input. This paper presents behavioral evidence for sleep’s role in selective remembering and forgetting of declarative memories, in generalization of these memories, and in motor skill consolidation. Recent physiological data reviewed suggests how these behavioral changes might be supported by sleep. Importantly, in reviewing these findings, an integrated view of how distinct sleep stages uniquely contribute to memory processing emerges. This model will be useful in developing future behavioral and physiological studies to test predictions that emerge. 1. Introduction There is a pervasive belief that sleep is a period of physical and mental inactivity and this inactivity allows us to be “refreshed” upon waking. Perhaps for this reason, we often dismiss the elementary mistakes made by sleep-deprived new parents, the emotionality of a napless child, and the poor performance of a jet-lagged sports team. In 1959, radio personality Peter Tripp provided the ultimate test of sleep deprivation by staying awake for 201?hrs. While his record would be surpassed, this highly public stunt (in a glass booth in New York’s Times Square) left a lasting record of the effects of extreme sleep deprivation. After 72?hrs, Tripp began hallucinating. Emotionally, he was depressed. Eventually he became incoherent [1]. Likewise, individuals with fatal familial insomnia, who gradually lose the ability to sleep, exhibit cognitive dysfunction in conjunction with developing symptoms [2]. Cognitive dysfunction following sleep deprivation suggests a role of sleep in preparing for subsequent performance. Moreover, brain activity during sleep is indicative of cognitive processing taking place in the sleeping brain (e.g., [3]). An emerging area of research, sleep cognitive neuroscience, has provided ample evidence that this brain activity is functional. Intervals with sleep protect [4] and, in some cases, enhance [5] memory in healthy individuals. For example, delayed recall on many memory tasks is more accurate if the intersession interval following learning contained sleep relative to recall following an equivalent interval spent awake [4, 6, 7]. Such benefits are thought to, at least in part, stem from consolidation of recent memories and episodes. Consolidation is a process by which memory storage becomes stronger and more efficient.
|