全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Targeted Drug Delivery to Endothelial Adhesion Molecules

DOI: 10.1155/2013/916254

Full-Text   Cite this paper   Add to My Lib

Abstract:

Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions. 1. Introduction: Targeting Therapeutics to Endothelium Most therapeutic agents do not naturally accumulate in intended targets in the body, which limits their efficacy and creates issues associated with off-target and systemic side effects and repetitive and complex administration regimens and costs. Utility of many drugs suffers from unfavorable solubility, pharmacokinetics, and permeability across cellular barriers. In order to overcome these issues of pharmacotherapy, drug targeting strategies emerged in the seventies, focusing primarily on delivery of antitumor, antimicrobial, and other toxic agents [1–3]. Advances in biotechnology yielded a new type of drugs, biotherapeutics, with wide utilities beyond oncology and infectious diseases, across diverse medical disciplines—cardiology, pulmonology, transplantation, rheumatology, and so forth. These “natural” therapeutic agents include recombinant therapeutic proteins including antibodies, enzymes, inhibitors, decoy receptors, as well as diverse nucleic acid formulations—gene therapies, siRNA, miRNA, and so forth. Many of these agents

References

[1]  M. A. Moses, H. Brem, and R. Langer, “Advancing the field of drug delivery: taking aim at cancer,” Cancer Cell, vol. 4, no. 5, pp. 337–341, 2003.
[2]  C. Kirby and G. Gergoriadis, “Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes,” Nature Biotechnology, vol. 2, no. 11, pp. 979–984, 1984.
[3]  J. W. Park, K. Hong, D. B. Kirpotin et al., “Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery,” Clinical Cancer Research, vol. 8, no. 4, pp. 1172–1181, 2002.
[4]  P. M. Vanhoutte, “Endothelium-derived free radicals: for worse and for better,” Journal of Clinical Investigation, vol. 107, no. 1, pp. 23–25, 2001.
[5]  M. Simionescu, A. Gafencu, and F. Antohe, “Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey,” Microscopy Research and Technique, vol. 57, no. 5, pp. 269–288, 2002.
[6]  M. A. Gimbrone Jr., “Vascular endothelium, hemodynamic forces, and atherogenesis,” American Journal of Pathology, vol. 155, no. 1, pp. 1–5, 1999.
[7]  M. I. Cybulsky and M. A. Gimbrone Jr., “Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis,” Science, vol. 251, no. 4995, pp. 788–791, 1991.
[8]  K. Iiyama, L. Hajra, M. Iiyama et al., “Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation,” Circulation Research, vol. 85, no. 2, pp. 199–207, 1999.
[9]  S. Muro and V. R. Muzykantov, “Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules,” Current Pharmaceutical Design, vol. 11, no. 18, pp. 2383–2401, 2005.
[10]  A. B. Fisher, “Redox signaling across cell membranes,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1349–1356, 2009.
[11]  B. H. Segal, W. Han, J. J. Bushey et al., “NADPH oxidase limits innate immune responses in the lungs in mice,” PloS One, vol. 5, no. 3, article e9631, 2010.
[12]  Y. M. W. Janssen-Heininger, B. T. Mossman, N. H. Heintz et al., “Redox-based regulation of signal transduction: principles, pitfalls, and promises,” Free Radical Biology and Medicine, vol. 45, no. 1, pp. 1–17, 2008.
[13]  A. van der Vliet, “NADPH oxidases in lung biology and pathology: host defense enzymes, and more,” Free Radical Biology and Medicine, vol. 44, no. 6, pp. 938–955, 2008.
[14]  S. G. Rhee, “H2O2, a necessary evil for cell signaling,” Science, vol. 312, no. 5782, pp. 1882–1883, 2006.
[15]  H. J. Forman, M. Maiorino, and F. Ursini, “Signaling functions of reactive oxygen species,” Biochemistry, vol. 49, no. 5, pp. 835–842, 2010.
[16]  S. A. Wickline, A. M. Neubauer, P. M. Winter, S. D. Caruthers, and G. M. Lanza, “Molecular imaging and therapy of atherosclerosis with targeted nanoparticles,” Journal of Magnetic Resonance Imaging, vol. 25, no. 4, pp. 667–680, 2007.
[17]  A. J. Hamilton, S. L. Huang, D. Warnick et al., “Intravascular ultrasound molecular imaging of atheroma components in vivo,” Journal of the American College of Cardiology, vol. 43, no. 3, pp. 453–460, 2004.
[18]  D. P. McIntosh, X. Y. Tan, P. Oh, and J. E. Schnitzer, “Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 1996–2001, 2002.
[19]  V. R. Muzykantov, “Immunotargeting of drugs to the pulmonary vascular endothelium as a therapeutic strategy,” Pathophysiology, vol. 5, no. 1, pp. 15–33, 1998.
[20]  V. R. Muzykantov, “Biomedical aspects of targeted delivery of drugs to pulmonary endothelium,” Expert Opinion on Drug Delivery, vol. 2, no. 5, pp. 909–926, 2005.
[21]  P. Oh, Y. Li, J. Yu et al., “Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy,” Nature, vol. 429, no. 6992, pp. 629–635, 2004.
[22]  J. E. Schnitzer, “Vascular targeting as a strategy for cancer therapy,” New England Journal of Medicine, vol. 339, no. 7, pp. 472–474, 1998.
[23]  D. D. Spragg, D. R. Alford, R. Greferath et al., “Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8795–8800, 1997.
[24]  S. J. Kennel, R. Lee, S. Bultman, and G. Kabalka, “Rat monoclonal antibody distribution in mice: an epitope inside the lung vascular space mediates very efficient localization,” International Journal of Radiation Applications and Instrumentation B, vol. 17, no. 2, pp. 193–200, 1990.
[25]  V. R. Muzykantov and S. M. Danilov, “Targeting of radiolabeled monoclonal antibody against ACE to the pulmonary endothelium,” in Targeted Delivery of Imaging Agents, V. Torchilin, Ed., pp. 465–485, CRC Press, Roca Baton, Fla, USA, 1995.
[26]  D. J. Goetz, M. E. el-Sabban, D. A. Hammer, and B. U. Pauli, “Lu-ECAM-1-mediated adhesion of melanoma cells to endothelium under conditions of flow,” International Journal of Cancer, vol. 65, pp. 192–199, 1996.
[27]  X. Huang, G. Molema, S. King, L. Watkins, T. S. Edgington, and P. E. Thorpe, “Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature,” Science, vol. 275, no. 5299, pp. 547–550, 1997.
[28]  R. V. Stan, L. Ghitescu, B. S. Jacobson, and G. E. Palade, “Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein,” Journal of Cell Biology, vol. 145, no. 6, pp. 1189–1198, 1999.
[29]  D. Rajotte, W. Arap, M. Hagedorn, E. Koivunen, R. Pasqualini, and E. Ruoslahti, “Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display,” Journal of Clinical Investigation, vol. 102, no. 2, pp. 430–437, 1998.
[30]  S. M. Danilov, V. R. Muzykantov, A. V. Martynov et al., “Lung is the target organ for a monoclonal antibody to angiotensin-converting enzyme,” Laboratory Investigation, vol. 64, no. 1, pp. 118–124, 1991.
[31]  R. Pasqualini, D. M. McDonald, and W. Arap, “Vascular targeting and antigen presentation,” Nature Immunology, vol. 2, no. 7, pp. 567–568, 2001.
[32]  V. R. Muzykantov, E. N. Atochina, H. Ischiropoulos, S. M. Danilov, and A. B. Fisher, “Immunotargeting of antioxidant enzymes to the pulmonary endothelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 11, pp. 5213–5218, 1996.
[33]  P. N. Reynolds, S. A. Nicklin, L. Kaliberova et al., “Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo,” Nature Biotechnology, vol. 19, no. 9, pp. 838–842, 2001.
[34]  R. Langer, “Drug delivery and targeting,” Nature, vol. 392, no. 6679, pp. 5–10, 1998.
[35]  V. S. Trubetskoy, V. P. Torchilin, S. Kennel, and L. Huang, “Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N-terminal modified poly(L-lysine)-antibody conjugate in mouse lung endothelial cells,” Biochimica et Biophysica Acta, vol. 1131, no. 3, pp. 311–313, 1992.
[36]  S. M. Danilov, A. V. Martynov, A. L. Klibanov et al., “Radioimmunoimaging of lung vessels: an approach using Indium-111-labeled monoclonal antibody to angiotensin-converting enzyme,” Journal of Nuclear Medicine, vol. 30, no. 10, pp. 1686–1692, 1989.
[37]  K. Maruyama, T. Takizawa, T. Yuda, S. J. Kennel, L. Huang, and M. Iwatsuru, “Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies,” Biochimica et Biophysica Acta, vol. 1234, no. 1, pp. 74–80, 1995.
[38]  M. Christofidou-Solomidou and V. R. Muzykantov, “Antioxidant strategies in respiratory medicine,” Treatments in Respiratory Medicine, vol. 5, no. 1, pp. 47–78, 2006.
[39]  V. R. Muzykantov, “Targeting of superoxide dismutase and catalase to vascular endothelium,” Journal of Controlled Release, vol. 71, no. 1, pp. 1–21, 2001.
[40]  R. Pasqualini, W. Arap, and D. M. McDonald, “Probing the structural and molecular diversity of tumor vasculature,” Trends in Molecular Medicine, vol. 8, no. 12, pp. 563–571, 2002.
[41]  S. Muro, “Challenges in design and characterization of ligand-targeted drug delivery systems,” Journal of Controlled Release, vol. 164, pp. 125–137, 2012.
[42]  V. R. Muzykantov, “Delivery of antioxidant enzyme proteins to the lung,” Antioxidants and Redox Signaling, vol. 3, no. 1, pp. 39–62, 2001.
[43]  B. S. Ding, T. Dziubla, V. V. Shuvaev, S. Muro, and V. R. Muzykantov, “Advanced drug delivery systems that target the vascular endothelium,” Molecular Interventions, vol. 6, no. 2, pp. 98–112, 2006.
[44]  Z. Cheng, A. Al Zaki, J. Z. Hui, V. R. Muzykantov, and A. Tsourkas, “Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities,” Science, vol. 338, pp. 903–910, 2012.
[45]  A. M. Chacko, E. D. Hood, B. J. Zern, and V. R. Muzykantov, “Targeted nanocarriers for imaging and therapy of vascular inflammation,” Current Opinion in Colloid & Interface Science, vol. 16, pp. 215–227, 2011.
[46]  C. Garnacho, S. M. Albelda, V. R. Muzykantov, and S. Muro, “Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes,” Journal of Controlled Release, vol. 130, no. 3, pp. 226–233, 2008.
[47]  A. Chrastina, P. Valadon, K. A. Massey, and J. E. Schnitzer, “Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis,” Journal of Vascular Research, vol. 47, no. 6, pp. 531–543, 2010.
[48]  J. Liu, G. E. R. Weller, B. Zern et al., “Computational model for nanocarrier binding to endothelium validated using in vivo, in vitro, and atomic force microscopy experiments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 38, pp. 16530–16535, 2010.
[49]  S. M. Danilov, V. D. Gavrilyuk, F. E. Franke et al., “Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting,” American Journal of Physiology, vol. 280, no. 6, pp. L1335–L1347, 2001.
[50]  V. V. Shuvaev, M. Christofidou-Solomidou, A. Scherpereel et al., “Factors modulating the delivery and effect of enzymatic cargo conjugated with antibodies targeted to the pulmonary endothelium,” Journal of Controlled Release, vol. 118, no. 2, pp. 235–244, 2007.
[51]  K. Watanabe, G. Lam, R. S. Keresztes, and E. A. Jaffe, “Lipopolysaccharides decrease angiotensin converting enzyme activity expressed by cultured human endothelial cells,” Journal of Cellular Physiology, vol. 150, no. 2, pp. 433–439, 1992.
[52]  E. N. Atochina, H. H. Hiemisch, V. R. Muzykantov, and S. M. Danilov, “Systemic administration of platelet-activating factor in rat reduces specific pulmonary uptake of circulating monoclonal antibody to angiotensin-converting enzyme,” Lung, vol. 170, no. 6, pp. 349–358, 1992.
[53]  V. R. Muzykantov, E. A. Puchnina, E. N. Atochina et al., “Endotoxin reduces specific pulmonary uptake of radiolabeled monoclonal antibody to angiotensin-converting enzyme,” Journal of Nuclear Medicine, vol. 32, no. 3, pp. 453–460, 1991.
[54]  A. Hajitou, M. Trepel, C. E. Lilley et al., “A Hybrid vector for ligand-directed tumor targeting and molecular imaging,” Cell, vol. 125, no. 2, pp. 385–398, 2006.
[55]  E. Durr, J. Yu, K. M. Krasinska et al., “Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture,” Nature Biotechnology, vol. 22, no. 8, pp. 985–992, 2004.
[56]  E. T. M. Keelan, A. A. Harrison, P. T. Chapman et al., “Imaging vascular endothelial activation: an approach using radiolabeled monoclonal antibodies against the endothelial cell adhesion molecule E-selectin,” Journal of Nuclear Medicine, vol. 35, no. 2, pp. 276–281, 1994.
[57]  S. Muro, M. Koval, and V. Muzykantov, “Endothelial endocytic pathways: gates for vascular drug delivery,” Current Vascular Pharmacology, vol. 2, no. 3, pp. 281–299, 2004.
[58]  S. Danilov, E. Atochina, H. Hiemisch et al., “Interaction of mAb to angiotensin-converting enzyme (ACE) with antigen in vitro and in vivo: antibody targeting to the lung induces ACE antigenic modulation,” International Immunology, vol. 6, no. 8, pp. 1153–1160, 1994.
[59]  H. Heitsch, S. Brovkovych, T. Malinski, and G. Wiemer, “Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells,” Hypertension, vol. 37, no. 1, pp. 72–76, 2001.
[60]  V. R. Muzykantov, E. N. Atochina, A. Kuo et al., “Endothelial cells internalize monoclonal antibody to angiotensin-converting enzyme,” American Journal of Physiology, vol. 270, no. 5, pp. L704–L713, 1996.
[61]  I. V. Balyasnikova, R. Metzger, D. J. Visintine et al., “Selective rat lung endothelial targeting with a new set of monoclonal antibodies to angiotensin I-converting enzyme,” Pulmonary Pharmacology and Therapeutics, vol. 18, no. 4, pp. 251–267, 2005.
[62]  I. V. Balyasnikova, Z. L. Sun, R. Metzger et al., “Monoclonal antibodies to native mouse angiotensin-converting enzyme (CD143): ACE expression quantification, lung endothelial cell targeting and gene delivery,” Tissue Antigens, vol. 67, no. 1, pp. 10–29, 2006.
[63]  E. N. Atochina, I. V. Balyasnikova, S. M. Danilov, D. Neil Granger, A. B. Fisher, and V. R. Muzykantov, “Immunotargeting of catalase to ACE or ICAM-1 protects perfused rat lungs against oxidative stress,” American Journal of Physiology, vol. 275, no. 4, pp. L806–L817, 1998.
[64]  K. Nowak, S. Weih, R. Metzger et al., “Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia-reperfusion injury of the lung in vivo,” American Journal of Physiology, vol. 293, no. 1, pp. L162–L169, 2007.
[65]  W. H. Miller, M. J. Brosnan, D. Graham et al., “Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevents elevation of blood pressure in stroke-prone spontaneously hypertensive rats,” Molecular Therapy, vol. 12, no. 2, pp. 321–327, 2005.
[66]  P. N. Reynolds, K. R. Zinn, V. D. Gavrilyuk et al., “A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo,” Molecular Therapy, vol. 2, no. 6, pp. 562–578, 2000.
[67]  A. M. Reynolds, W. Xia, M. D. Holmes et al., “Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension,” American Journal of Physiology, vol. 292, no. 5, pp. L1182–L1192, 2007.
[68]  K. Nowak, C. Hanusch, K. Nicksch et al., “Pre-ischaemic conditioning of the pulmonary endothelium by immunotargeting of catalase via angiotensin-converting-enzyme antibodies,” European Journal Cardio-Thoracic Surgery, vol. 37, no. 4, pp. 859–863, 2010.
[69]  I. Morecroft, K. White, P. Caruso et al., “Gene therapy by targeted adenovirus-mediated knockdown of pulmonary endothelial Tph1 attenuates hypoxia-induced pulmonary hypertension,” Molecular Therapy, vol. 20, no. 8, pp. 1516–1528, 2012.
[70]  K. Nowak, H. C. Kolbel, R. P. Metzger et al., “Immunotargeting of the pulmonary endothelium via angiotensin-converting-enzyme in isolated ventilated and perfused human lung,” Advances in Experimental Medicine and Biology, vol. 756, pp. 203–212, 2013.
[71]  W. C. Aird, J. M. Edelberg, H. Weiler-Guettler, W. W. Simmons, T. W. Smith, and R. D. Rosenberg, “Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment,” Journal of Cell Biology, vol. 138, no. 5, pp. 1117–1124, 1997.
[72]  W. C. Aird, “Phenotypic heterogeneity of the endothelium. I: structure, function, and mechanisms,” Circulation Research, vol. 100, no. 2, pp. 158–173, 2007.
[73]  L. Ghitescu, B. S. Jacobson, and P. Crine, “A novel, 85 KDA endothelial antigen differentiates plasma membrane macrodomains in lung alveolar capillaries,” Endothelium, vol. 6, no. 3, pp. 241–250, 1999.
[74]  J. C. Murciano, D. W. Harshaw, L. Ghitescu, S. M. Danilov, and V. R. Muzykantov, “Vascular immunotargeting to endothelial surface in a specific macrodomain in alveolar capillaries,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 7, pp. 1295–1302, 2001.
[75]  P. Oh, P. Borgstr?m, H. Witkiewicz et al., “Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung,” Nature Biotechnology, vol. 25, no. 4, pp. 327–337, 2007.
[76]  M. D. Howard, M. Jay, T. D. Dziubla, and X. Lu, “PEGylation of nanocarrier drug delivery systems: state of the art,” Journal of Biomedical Nanotechnology, vol. 4, no. 2, pp. 133–148, 2008.
[77]  S. J. Kennel, R. Falcioni, and J. W. Wesley, “Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts,” Cancer Research, vol. 51, no. 5, pp. 1529–1536, 1991.
[78]  M. Christofidou-Solomidou, S. Kennel, A. Scherpereel et al., “Vascular immunotargeting of glucose oxidase to the endothelial antigens induces distinct forms of oxidant acute lung injury: targeting to thrombomodulin, but not to PECAM-1, causes pulmonary thrombosis and neutrophil transmigration,” American Journal of Pathology, vol. 160, no. 3, pp. 1155–1169, 2002.
[79]  C. T. Esmon, “Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface,” FASEB Journal, vol. 9, no. 10, pp. 946–955, 1995.
[80]  V. R. Muzykantov, “Targeted therapeutics and nanodevices for vascular drug delivery: quo vadis?” IUBMB Life, vol. 63, no. 8, pp. 583–585, 2011.
[81]  T. Kumasaka, W. M. Quinlan, N. A. Doyle et al., “Role of the intercellular adhesion molecule-1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice,” Journal of Clinical Investigation, vol. 97, no. 10, pp. 2362–2369, 1996.
[82]  T. K. Kishimoto and R. Rothlein, “Integrins, ICAMs, and selectins: role and regulation of adhesion molecules in neutrophil recruitment to inflammatory sites,” Advances in Pharmacology C, vol. 25, pp. 117–169, 1994.
[83]  S. M. Albelda, “Endothelial and epithelial cell adhesion molecules,” American Journal of Respiratory Cell and Molecular Biology, vol. 4, no. 3, pp. 195–203, 1991.
[84]  T. A. Springer, “Adhesion receptors of the immune system,” Nature, vol. 346, no. 6283, pp. 425–434, 1990.
[85]  K. A. Kelly, J. R. Allport, A. Tsourkas, V. R. Shinde-Patil, L. Josephson, and R. Weissleder, “Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle,” Circulation Research, vol. 96, no. 3, pp. 327–336, 2005.
[86]  A. Tsourkas, V. R. Shinde-Patil, K. A. Kelly et al., “In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe,” Bioconjugate Chemistry, vol. 16, no. 3, pp. 576–581, 2005.
[87]  D. B. Taichman, M. I. Cybulsky, I. Djaffar et al., “Tumor cell surface alpha 4 beta 1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1,” Cell Regulation, vol. 2, no. 5, pp. 347–355, 1991.
[88]  T. W. Kuijpers, M. Raleigh, T. Kavanagh et al., “Cytokine-activated endothelial cells internalize E-selectin into a lysosomal compartment of vesiculotubular shape: a tubulin-driven process,” Journal of Immunology, vol. 152, no. 10, pp. 5060–5069, 1994.
[89]  K. S. Straley and S. A. Green, “Rapid transport of internalized P-selectin to late endosomes and the TGN: roles in regulating cell surface expression and recycling to secretory granules,” Journal of Cell Biology, vol. 151, no. 1, pp. 107–116, 2000.
[90]  E. J. U. von Asmuth, E. F. Smeets, L. A. Ginsel, J. J. M. Onderwater, J. F. M. Leeuwenberg, and W. A. Buurman, “Evidence for endocytosis of E-selectin in human endothelial cells,” European Journal of Immunology, vol. 22, no. 10, pp. 2519–2526, 1992.
[91]  S. Kessner, A. Krause, U. Rothe, and G. Bendas, “Investigation of the cellular uptake of E-Selectin-targeted immunoliposomes by activated human endothelial cells,” Biochimica et Biophysica Acta, vol. 1514, no. 2, pp. 177–190, 2001.
[92]  R. J. Kok, M. Everts, S. A. ásgeirsdóttir, D. K. F. Meijer, and G. Molema, “Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells: comparison with free dexamethasone,” Pharmaceutical Research, vol. 19, no. 11, pp. 1730–1735, 2002.
[93]  O. A. Harari, T. J. Wickham, C. J. Stocker et al., “Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin,” Gene Therapy, vol. 6, no. 5, pp. 801–807, 1999.
[94]  M. Everts, R. J. Kok, S. A. ásgeirsdóttir et al., “Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate,” Journal of Immunology, vol. 168, no. 2, pp. 883–889, 2002.
[95]  I. Ricard, M. D. Payet, and G. Dupuis, “VCAM-1 is internalized by a clathrin-related pathway in human endothelial cells but its alpha 4 beta 1 integrin counter-receptor remains associated with the plasma membrane in human T lymphocytes,” European Journal of Immunology, vol. 28, pp. 1708–1718, 1998.
[96]  J. R. Lindner, J. Song, J. Christiansen, A. L. Klibanov, F. Xu, and K. Ley, “Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin,” Circulation, vol. 104, no. 17, pp. 2107–2112, 2001.
[97]  D. B. Cines, E. S. Pollak, C. A. Buck et al., “Endothelial cells in physiology and in the pathophysiology of vascular disorders,” Blood, vol. 91, no. 10, pp. 3527–3561, 1998.
[98]  J. R. Lindner, A. L. Klibanov, and K. Ley, “Targeting inflammation,” in Biomedical Aspects of Drug Targeting, V. R. Muzykantov and V. P. Torchilin, Eds., pp. 149–172, Kluwer Academic Publishers, Boston, Mass, USA, 2003.
[99]  O. Carpen, P. Pallai, D. E. Staunton, and T. A. Springer, “Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and α-actinin,” Journal of Cell Biology, vol. 118, no. 5, pp. 1223–1234, 1992.
[100]  C. J. Treutiger, A. Heddini, V. Fernandez, W. A. Muller, and M. Wahlgren, “PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes,” Nature Medicine, vol. 3, no. 12, pp. 1405–1408, 1997.
[101]  S. R. Thomas, P. K. Witting, and G. R. Drummond, “Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 10, no. 10, pp. 1713–1765, 2008.
[102]  A. Almenar-Queralt, A. Duperray, L. A. Miles, J. Felez, and D. C. Altieri, “Apical topography and modulation of ICAM-1 expression on activated endothelium,” American Journal of Pathology, vol. 147, no. 5, pp. 1278–1288, 1995.
[103]  L. H. Romer, N. V. McLean, H. C. Yan, M. Daise, J. Sun, and H. M. DeLisser, “IFN-γ and TNF-α induce redistribution of PECAM-1 (CD31) on human endothelial cells,” Journal of Immunology, vol. 154, no. 12, pp. 6582–6592, 1995.
[104]  R. Scalia and A. M. Lefer, “In vivo regulation of PECAM-1 activity during acute endothelial dysfunction in the rat mesenteric microvasculature,” Journal of Leukocyte Biology, vol. 64, no. 2, pp. 163–169, 1998.
[105]  R. Rothlein and C. Wegner, “Role of intercellular adhesion molecule-1 in the inflammatory response,” Kidney International, vol. 41, no. 3, pp. 617–619, 1992.
[106]  S. Muro, X. Cui, C. Gajewski, J. C. Murciano, V. R. Muzykantov, and M. Koval, “Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress,” American Journal of Physiology, vol. 285, no. 5, pp. C1339–C1347, 2003.
[107]  A. K. Hubbard and R. Rothlein, “Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1379–1386, 2000.
[108]  M. Y. Cao, M. Huber, N. Beauchemin, J. Famiglietti, S. M. Albelda, and A. Veillette, “Regulation of mouse PECAM-1 tyrosine phosphorylation by the Src and Csk families of protein-tyrosine kinases,” Journal of Biological Chemistry, vol. 273, no. 25, pp. 15765–15772, 1998.
[109]  G. Cao, C. D. O'Brien, Z. Zhou et al., “Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration,” American Journal of Physiology, vol. 282, no. 5, pp. C1181–C1190, 2002.
[110]  H. M. DeLisser, M. Christofidou-Solomidou, R. M. Strieter et al., “Involvement of endothelial PECAM-1/CD31 in angiogenesis,” American Journal of Pathology, vol. 151, no. 3, pp. 671–677, 1997.
[111]  H. M. DeLisser, H. C. Y. Horng Chin Yan, P. J. Newman, W. A. Muller, C. A. Buck, and S. M. Albelda, “Platelet/endothelial cell adhesion molecule-1 (CD31)-mediated cellular aggregation involves cell surface glycosaminoglycans,” Journal of Biological Chemistry, vol. 268, no. 21, pp. 16037–16046, 1993.
[112]  M. S. Diamond, D. E. Staunton, A. R. de Fougerolles et al., “ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18),” Journal of Cell Biology, vol. 111, no. 6, pp. 3129–3139, 1990.
[113]  C. D. Jun, M. Shimaoka, C. V. Carman, J. Takagi, and T. A. Springer, “Dimerization and the effectiveness of ICAM-1 in mediating LFA-1-dependent adhesion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6830–6835, 2001.
[114]  M. T. Nakada, K. Amin, M. Christofidou-Solomidou et al., “Antibodies against the first Ig-like domain of human platelet endothelial cell adhesion molecule-1 (PECAM-1) that inhibit PECAM-1-dependent homophilic adhesion block in vivo neutrophil recruitment,” Journal of Immunology, vol. 164, no. 1, pp. 452–462, 2000.
[115]  T. Murohara, J. A. Delyani, S. M. Albelda, and A. M. Lefer, “Blockade of platelet endothelial cell adhesion molecule-1 protects against myocardial ischemia and reperfusion injury in cats,” Journal of Immunology, vol. 156, no. 9, pp. 3550–3557, 1996.
[116]  V. R. Muzykantov, M. Christofidou-Solomidou, I. Balyasnikova et al., “Streptavidin facilitates internalization and pulmonary targeting of an anti-endothelial cell antibody (platelet-endothelial cell adhesion molecule 1): a strategy for vascular immunotargeting of drugs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2379–2384, 1999.
[117]  S. Muro, C. Gajewski, M. Koval, and V. R. Muzykantov, “ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs,” Blood, vol. 105, no. 2, pp. 650–658, 2005.
[118]  A. Scherpereel, J. J. Rome, R. Wiewrodt et al., “Platelet-endothelial cell adhesion molecule-1-directed immunotargeting to cardiopulmonary vasculature,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 3, pp. 777–786, 2002.
[119]  J. Panes, M. A. Perry, D. C. Anderson et al., “Portal hypertension enhances endotoxin-induced intercellular adhesion molecule 1 up-regulation in the rat,” Gastroenterology, vol. 110, no. 3, pp. 866–874, 1996.
[120]  J. C. Murciano, S. Muro, L. Koniaris et al., “ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface,” Blood, vol. 101, no. 10, pp. 3977–3984, 2003.
[121]  M. Christofidou-Solomidou, A. Scherpereel, R. Wiewrodt et al., “PECAM-directed delivery of catalase to endothelium protects against pulmonary vascular oxidative stress,” American Journal of Physiology, vol. 285, no. 2, pp. L283–L292, 2003.
[122]  A. Scherpereel, R. Wiewrodt, M. Christofidou-Solomidou et al., “Cell-selective intracellular delivery of a foreign enzyme to endothelium in vivo using vascular immunotargeting,” FASEB Journal, vol. 15, no. 2, pp. 416–426, 2001.
[123]  K. Danielyan, B. S. Ding, C. Gottstein, D. B. Cines, and V. R. Muzykantov, “Delivery of anti-platelet-endothelial cell adhesion molecule single-chain variable fragment-urokinase fusion protein to the cerebral vasculature lyses arterial clots and attenuates postischemic brain edema,” Journal of Pharmacology and Experimental Therapeutics, vol. 321, no. 3, pp. 947–952, 2007.
[124]  C. Garnacho, R. Dhami, E. Simone et al., “Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 2, pp. 400–408, 2008.
[125]  S. Muro, T. Dziubla, W. Qiu et al., “Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1,” Journal of Pharmacology and Experimental Therapeutics, vol. 317, no. 3, pp. 1161–1169, 2006.
[126]  A. J. Gow, F. Branco, M. Christofidou-Solomidou, L. Black-Schultz, S. M. Albelda, and V. R. Muzykantov, “Immunotargeting of glucose oxidase: intracellular production of H2O2 and endothelial oxidative stress,” American Journal of Physiology, vol. 277, no. 2, pp. L271–L281, 1999.
[127]  B. S. Ding, C. Gottstein, A. Grunow et al., “Endothelial targeting of a recombinant construct fusing a PECAM-1 single-chain variable antibody fragment (scFv) with prourokinase facilitates prophylactic thrombolysis in the pulmonary vasculature,” Blood, vol. 106, no. 13, pp. 4191–4198, 2005.
[128]  A. K. Bélizaire, L. Tchistiakova, Y. St-Pierre, and V. Alakhov, “Identification of a murine ICAM-1-specific peptide by subtractive phage library selection on cells,” Biochemical and Biophysical Research Communications, vol. 309, no. 3, pp. 625–630, 2003.
[129]  G. X. Luo, L. A. Kohlstaedt, C. H. Charles et al., “Humanization of an anti-ICAM-1 antibody with over 50-fold affinity and functional improvement,” Journal of Immunological Methods, vol. 275, no. 1-2, pp. 31–40, 2003.
[130]  C. H. Charles, G. X. Luo, L. A. Kohlstaedt et al., “Prevention of human rhinovirus infection by multivalent Fab molecules directed against ICAM-1,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 5, pp. 1503–1508, 2003.
[131]  K. Furuya, H. Takeda, S. Azhar et al., “Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study,” Stroke, vol. 32, no. 11, pp. 2665–2674, 2001.
[132]  R. Rothlein, E. A. Mainolfi, and T. K. Kishimoto, “Treatment of inflammation with anti-ICAM-1,” Research in Immunology, vol. 144, no. 9, pp. 735–739, 1993.
[133]  C. Garnacho, D. Serrano, and S. Muro, “A fibrinogen-derived peptide provides intercellular adhesion molecule-1-specific targeting and intraendothelial transport of polymer nanocarriers in human cell cultures and mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 340, no. 3, pp. 638–647, 2012.
[134]  S. Danilov, E. Jaspard, T. Churakova et al., “Structure-function analysis of angiotensin I-converting enzyme using monoclonal antibodies. Selective inhibition of the amino-terminal active site,” Journal of Biological Chemistry, vol. 269, no. 43, pp. 26806–26814, 1994.
[135]  I. V. Balyasnikova, E. H. Karran, R. F. Albrecht II, and S. M. Danilov, “Epitope-specific antibody-induced cleavage of angiotensin-converting enzyme from the cell surface,” Biochemical Journal, vol. 362, no. 3, pp. 585–595, 2002.
[136]  K. Gordon, I. V. Balyasnikova, A. B. Nesterovitch, D. E. Schwartz, E. D. Sturrock, and S. M. Danilov, “Fine epitope mapping of monoclonal antibodies 9B9 and 3G8 to the N domain of angiotensin-converting enzyme (CD143) defines a region involved in regulating angiotensin-converting enzyme dimerization and shedding,” Tissue Antigens, vol. 75, no. 2, pp. 136–150, 2010.
[137]  A. M. Chacko, M. Nayak, C. F. Greineder, H. M. Delisser, and V. R. Muzykantov, “Collaborative enhancement of antibody binding to distinct PECAM-1 epitopes modulates endothelial targeting,” PLoS One, vol. 7, no. 4, Article ID e34958, 2012.
[138]  S. Muro, “New biotechnological and nanomedicine strategies for treatment of lysosomal storage disorders,” Wiley Interdisciplinary Reviews, vol. 2, no. 2, pp. 189–204, 2010.
[139]  A. J. Calderon, V. Muzykantov, S. Muro, and D. M. Eckmann, “Flow dynamics, binding and detachment of spherical carriers targeted to ICAM-1 on endothelial cells,” Biorheology, vol. 46, no. 4, pp. 323–341, 2009.
[140]  A. J. Calderon, T. Bhowmick, J. Leferovich et al., “Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers,” Journal of Controlled Release, vol. 150, no. 1, pp. 37–44, 2011.
[141]  A. O. Eniola and D. A. Hammer, “In vitro characterization of leukocyte mimetic for targeting therapeutics to the endothelium using two receptors,” Biomaterials, vol. 26, no. 34, pp. 7136–7144, 2005.
[142]  R. C. Gunawan and D. T. Auguste, “The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes,” Biomaterials, vol. 31, no. 5, pp. 900–907, 2010.
[143]  I. T. Papademetriou, C. Garnacho, E. H. Schuchman, and S. Muro, “In vivo performance of polymer nanocarriers dually-targeted to epitopes of the same or different receptors,” Biomaterials, vol. 34, pp. 3459–3466, 2013.
[144]  P. G. Bloemen, P. A. Henricks, L. van Bloois et al., “Adhesion molecules: a new target for immunoliposome-mediated drug delivery,” FEBS Letters, vol. 357, pp. 140–144, 1995.
[145]  M. Bartsch, A. H. Weeke-Klimp, H. W. M. Morselt et al., “Optimized targeting of polyethylene glycol-stabilized anti-intercellular adhesion molecule 1 oligonucleotide/lipid particles to liver sinusoidal endothelial cells,” Molecular Pharmacology, vol. 67, no. 3, pp. 883–890, 2005.
[146]  S. Khondee, A. Baoum, T. J. Siahaan, and C. Berkland, “Calcium condensed LABL-TAT complexes effectively target gene delivery to ICAM-1 expressing cells,” Molecular Pharmaceutics, vol. 8, no. 3, pp. 788–798, 2011.
[147]  G. P. Robbins, R. L. Saunders, J. B. Haun, J. Rawson, M. J. Therien, and D. A. Hammer, “Tunable leuko-polymersomes that adhere specifically to inflammatory markers,” Langmuir, vol. 26, no. 17, pp. 14089–14096, 2010.
[148]  T. D. Dziubla, V. V. Shuvaev, N. K. Hong et al., “Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies,” Biomaterials, vol. 29, no. 2, pp. 215–227, 2008.
[149]  S. Muro, C. Garnacho, J. A. Champion et al., “Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers,” Molecular Therapy, vol. 16, no. 8, pp. 1450–1458, 2008.
[150]  N. Zhang, C. Chittasupho, C. Duangrat, T. J. Siahaan, and C. Berkland, “PLGA nanoparticle-peptide conjugate effectively targets intercellular cell-adhesion molecule-1,” Bioconjugate Chemistry, vol. 19, no. 1, pp. 145–152, 2008.
[151]  M. Christofidou-Solomidou, G. G. Pietra, C. C. Solomides et al., “Immunotargeting of glucose oxidase to endothelium in vivo causes oxidative vascular injury in the lungs,” American Journal of Physiology, vol. 278, no. 4, pp. L794–L805, 2000.
[152]  T. D. Sweitzer, A. P. Thomas, R. Wiewrodt, M. T. Nakada, F. Branco, and V. R. Muzykantov, “Pecam-directed immunotargeting of catalase: specific, rapid and transient protection against hydrogen peroxide,” Free Radical Biology and Medicine, vol. 34, no. 8, pp. 1035–1046, 2003.
[153]  R. Wiewrodt, A. P. Thomas, L. Cipelletti et al., “Size-dependent intracellular immunotargeting of therapeutic cargoes into endothelial cells,” Blood, vol. 99, no. 3, pp. 912–922, 2002.
[154]  S. Li, Y. Tan, E. Viroonchatapan, B. R. Pitt, and L. Huang, “Targeted gene delivery to pulmonary endothelium by anti-PECAM antibody,” American Journal of Physiology, vol. 278, no. 3, pp. L504–L511, 2000.
[155]  F. S. Villanueva, R. J. Jankowski, S. Klibanov et al., “Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells,” Circulation, vol. 98, no. 1, pp. 1–5, 1998.
[156]  S. Mukherjee, R. N. Ghosh, and F. R. Maxfield, “Endocytosis,” Physiological Reviews, vol. 77, no. 3, pp. 759–803, 1997.
[157]  E. Caron and A. Hall, Phagocytosis, Oxford University Press, 2001.
[158]  G. G. Sahagian and C. J. Steer, “Transmembrane orientation of the mannose 6-phosphate receptor in isolated clathrin-coated vesicles,” Journal of Biological Chemistry, vol. 260, no. 17, pp. 9838–9842, 1985.
[159]  I. Mellman, “Endocytosis and molecular sorting,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 575–625, 1996.
[160]  R. D. Minshall, C. Tiruppathi, S. M. Vogel et al., “Endothelial cell-surface gp60 activates vesicle formation and trafficking via G(i)-coupled Src kinase signaling pathway,” Journal of Cell Biology, vol. 150, no. 5, pp. 1057–1069, 2000.
[161]  D. Predescu, S. Predescu, and A. B. Malik, “Transport of nitrated albumin across continuous vascular endothelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13932–13937, 2002.
[162]  N. Ilan, A. Mohsenin, L. Cheung, and J. A. Madri, “PECAM-1 shedding during apoptosis generates a membrane-anchored truncated molecule with unique signaling characteristics,” FASEB Journal, vol. 15, no. 2, pp. 362–372, 2001.
[163]  S. Muro, R. Wiewrodt, A. Thomas et al., “A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1,” Journal of Cell Science, vol. 116, no. 8, pp. 1599–1609, 2003.
[164]  S. Muro, V. R. Muzykantov, and J. C. Murciano, “Characterization of endothelial internalization and targeting of antibody-enzyme conjugates in cell cultures and in laboratory animals,” Methods in Molecular Biology, vol. 283, pp. 21–36, 2004.
[165]  L. A. Carver and J. E. Schnitzer, “Caveolae: mining little caves for new cancer targets,” Nature Reviews Cancer, vol. 3, no. 8, pp. 571–581, 2003.
[166]  E. Dejana, “Endothelial adherens junctions. Implications in the control of vascular permeability and angiogenesis,” Journal of Clinical Investigation, vol. 98, no. 9, pp. 1949–1953, 1996.
[167]  W. M. Pardridge, J. Buciak, J. Yang, and D. Wu, “Enhanced endocytosis in cultured human breast carcinoma cells and in vivo biodistribution in rats of a humanized monoclonal antibody after cationization of the protein,” Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 1, pp. 548–554, 1998.
[168]  D. Predescu, S. M. Vogel, and A. B. Malik, “Functional and morphological studies of protein transcytosis in continuous endothelia,” American Journal of Physiology, vol. 287, no. 5, pp. L895–L901, 2004.
[169]  Y. Zhang, F. Schlachetzki, and W. M. Pardridge, “Global non-viral gene transfer to the promate brain following intravenous administration,” Molecular Therapy, vol. 7, no. 1, pp. 11–18, 2003.
[170]  J. E. Schnitzer, P. Oh, and D. P. McIntosh, “Role of GTP hydrolysis in fission of caveolae directly from plasma membranes,” Science, vol. 274, no. 5285, pp. 239–242, 1996.
[171]  S. M. Vogel, C. R. Easington, R. D. Minshall et al., “Evidence of transcellular permeability pathway in microvessels,” Microvascular Research, vol. 61, no. 1, pp. 87–101, 2001.
[172]  A. M. Dvorak and D. Feng, “The vesiculo-vacuolar organelle (VVO): a new endothelial cell permeability organelle,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 4, pp. 419–431, 2001.
[173]  T. G. Iversen, N. Frerker, and K. Sandvig, “Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism,” Journal of Nanobiotechnology, vol. 10, article 33, 2012.
[174]  Z. Wang, C. Tiruppathi, R. D. Minshall, and A. B. Malik, “Size and dynamics of caveolae studied using nanoparticles in living endothelial cells,” ACS Nano, vol. 3, no. 12, pp. 4110–4116, 2009.
[175]  P. Oh, P. Borgstr?m, H. Witkiewicz et al., “Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung,” Nature Biotechnology, vol. 25, no. 4, pp. 327–337, 2007.
[176]  J. E. Schnitzer, J. Liu, and P. Oh, “Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases,” Journal of Biological Chemistry, vol. 270, no. 24, pp. 14399–14404, 1995.
[177]  J. E. Schnitzer, “Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo,” Advanced Drug Delivery Reviews, vol. 49, no. 3, pp. 265–280, 2001.
[178]  D. Mehta, J. Bhattacharya, M. A. Matthay, and A. B. Malik, “Integrated control of lung fluid balance,” American Journal of Physiology, vol. 287, no. 6, pp. L1081–L1090, 2004.
[179]  R. Ghaffarian, T. Bhowmick, and S. Muro, “Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1,” Journal of Controlled Release, vol. 163, pp. 25–33, 2012.
[180]  V. Mane and S. Muro, “Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice,” International Journal of Nanomedicine, vol. 7, pp. 4223–4237, 2012.
[181]  J. E. Blackwell, N. M. Dagia, J. B. Dickerson, E. L. Berg, and D. J. Goetz, “Ligand coated nanosphere adhesion to E- and P-selectin under static and flow conditions,” Annals of Biomedical Engineering, vol. 29, no. 6, pp. 523–533, 2001.
[182]  T. N. Swaminathan, J. Liu, U. Balakrishnan, P. S. Ayyaswamy, R. Radhakrishnan, and D. M. Eckmann, “Dynamic factors controlling carrier anchoring on vascular cells,” IUBMB Life, vol. 63, no. 8, pp. 640–647, 2011.
[183]  P. Charoenphol, R. B. Huang, and O. Eniola-Adefeso, “Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers,” Biomaterials, vol. 31, no. 6, pp. 1392–1402, 2010.
[184]  P. Charoenphol, P. J. Onyskiw, M. Carrasco-Teja, and O. Eniola-Adefeso, “Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery,” Journal of Biomechanics, vol. 45, pp. 2822–2828, 2012.
[185]  K. Namdee, A. J. Thompson, P. Charoenphol, and O. Eniola-Adefeso, “Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels,” Langmuir, vol. 29, pp. 2530–2535, 2013.
[186]  M. F. Kiani, H. Yuan, X. Chen, L. Smith, M. W. Gaber, and D. J. Goetz, “Targeting microparticles to select tissue via radiation-induced upregulation of endothelial cell adhesion molecules,” Pharmaceutical Research, vol. 19, no. 9, pp. 1317–1322, 2002.
[187]  H. S. Sakhalkar, J. Hanes, J. Fu et al., “Enhanced adhesion of ligand-conjugated biodegradable particles to colitic venules,” FASEB Journal, vol. 19, no. 7, pp. 792–794, 2005.
[188]  H. S. Sakhalkar, M. K. Dalal, A. K. Salem et al., “Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15895–15900, 2003.
[189]  A. Fakhari, A. Baoum, T. J. Siahaan, K. B. Le, and C. Berkland, “Controlling ligand surface density optimizes nanoparticle binding to ICAM-1,” Journal of Pharmaceutical Sciences, vol. 100, no. 3, pp. 1045–1056, 2011.
[190]  B. J. Zern, A. M. Chacko, J. Liu et al., “Reduction of nanoparticle avidity enhances the selectivity of vascular targeting and PET detection of pulmonary inflammation,” ACS Nano, vol. 7, pp. 2461–2469, 2013.
[191]  V. V. Shuvaev, S. Tliba, J. Pick et al., “Modulation of endothelial targeting by size of antibody-antioxidant enzyme conjugates,” Journal of Controlled Release, vol. 149, no. 3, pp. 236–241, 2011.
[192]  V. V. Shuvaev, M. A. Ilies, E. Simone et al., “Endothelial targeting of antibody-decorated polymeric filomicelles,” ACS Nano, vol. 5, no. 9, pp. 6991–6999, 2011.
[193]  T. Bhowmick, E. Berk, X. Cui, V. R. Muzykantov, and S. Muro, “Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1,” Journal of Controlled Release, vol. 157, no. 3, pp. 485–492, 2012.
[194]  J. Han, B. J. Zern, V. V. Shuvaev, P. F. Davies, S. Muro, and V. Muzykantov, “Acute and chronic shear stress differently regulate endothelial internalization of nanocarriers targeted to platelet-endothelial cell adhesion molecule-1,” ACS Nano, vol. 6, pp. 8824–8836, 2012.
[195]  C. Chittasupho, S. X. Xie, A. Baoum, T. Yakovleva, T. J. Siahaan, and C. J. Berkland, “ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells,” European Journal of Pharmaceutical Sciences, vol. 37, no. 2, pp. 141–150, 2009.
[196]  B. D. Kozower, M. Christofidou-Solomidou, T. D. Sweitzer et al., “Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury,” Nature Biotechnology, vol. 21, no. 4, pp. 392–398, 2003.
[197]  I. K. Ko, T. J. Kean, and J. E. Dennis, “Targeting mesenchymal stem cells to activated endothelial cells,” Biomaterials, vol. 30, no. 22, pp. 3702–3710, 2009.
[198]  S. M. Herbst, M. E. Klegerman, H. Kim et al., “Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1,” Molecular Pharmaceutics, vol. 7, no. 1, pp. 3–11, 2010.
[199]  V. V. Shuvaev, J. Han, K. J. Yu et al., “PECAM-targeted delivery of SOD inhibits endothelial inflammatory response,” FASEB Journal, vol. 25, no. 1, pp. 348–357, 2011.
[200]  R. Rossin, S. Muro, M. J. Welch, V. R. Muzykantov, and D. P. Schustery, “In vivo imaging of 64 Cu-labeled polymer nanoparticles targeted to the lung endothelium,” Journal of Nuclear Medicine, vol. 49, no. 1, pp. 103–111, 2008.
[201]  A. Broisat, L. M. Riou, V. Ardisson et al., “Molecular imaging of vascular cell adhesion molecule-1 expression in experimental atherosclerotic plaques with radiolabelled B2702-p,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 6, pp. 830–840, 2007.
[202]  T. Himi, K. J. A. Kairemo, and H. A. Ramsay, “Expression profile of vascular cell adhesion molecule-1 (CD106) in the middle ear using radiolabeled monoclonal antibody,” European Archives of Oto-Rhino-Laryngology, vol. 255, no. 4, pp. 179–183, 1998.
[203]  M. Nahrendorf, F. A. Jaffer, K. A. Kelly et al., “Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis,” Circulation, vol. 114, no. 14, pp. 1504–1511, 2006.
[204]  A. J. Mieszawska, W. J. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Molecular Pharmacology, vol. 10, pp. 831–847, 2013.
[205]  D. R. J. Owen, A. C. Lindsay, R. P. Choudhury, and Z. A. Fayad, “Imaging of atherosclerosis,” Annual Review of Medicine, vol. 62, pp. 25–40, 2011.
[206]  R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, “MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 7, pp. 1065–1074, 2002.
[207]  P. R. Reynolds, D. J. Larkman, D. O. Haskard et al., “Detection of vascular expression of E-selectin in vivo with MR imaging,” Radiology, vol. 241, no. 2, pp. 469–476, 2006.
[208]  C. Chapon, F. Franconi, F. Lacoeuille et al., “Imaging E-selectin expression following traumatic brain injury in the rat using a targeted USPIO contrast agent,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 22, no. 3, pp. 167–174, 2009.
[209]  S. I. van Kasteren, S. J. Campbell, S. Serres, D. C. Anthony, N. R. Sibson, and B. G. Davis, “Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 1, pp. 18–23, 2009.
[210]  A. Y. Jin, U. I. Tuor, D. Rushforth et al., “Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle,” Contrast Media and Molecular Imaging, vol. 4, no. 6, pp. 305–311, 2009.
[211]  A. Tsourkas, V. R. Shinde-Patil, K. A. Kelly et al., “In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe,” Bioconjugate Chemistry, vol. 16, no. 3, pp. 576–581, 2005.
[212]  M. A. McAteer, N. R. Sibson, C. von Zur Muhlen et al., “In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide,” Nature Medicine, vol. 13, no. 10, pp. 1253–1258, 2007.
[213]  L. C. Hoyte, K. J. Brooks, S. Nagel et al., “Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 6, pp. 1178–1187, 2010.
[214]  R. Southworth, M. Kaneda, J. Chen et al., “Renal vascular inflammation induced by Western diet in ApoE-null mice quantified by NMR of VCAM-1 targeted nanobeacons,” Nanomedicine, vol. 5, no. 3, pp. 359–367, 2009.
[215]  B. A. Kaufmann, C. L. Carr, J. T. Belcik et al., “Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 1, pp. 54–59, 2010.
[216]  A. Jayagopal, P. K. Russ, and F. R. Haselton, “Surface engineering of quantum dots for in vivo vascular imaging,” Bioconjugate Chemistry, vol. 18, no. 5, pp. 1424–1433, 2007.
[217]  L. H. Deddens, G. A. van Tilborg, A. van der Toorn et al., “MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent,” Molecular Imaging and Biology, 2013.
[218]  E. A. Simone, B. J. Zern, A. M. Chacko et al., “Endothelial targeting of polymeric nanoparticles stably labeled with the PET imaging radioisotope iodine-124,” Biomaterials, vol. 33, no. 21, pp. 5406–5413, 2012.
[219]  G. A. Koning, R. M. Schiffelers, M. H. M. Wauben et al., “Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis,” Arthritis and Rheumatism, vol. 54, no. 4, pp. 1198–1208, 2006.
[220]  S. A. ásgeirsdóttir, P. J. Zwiers, H. W. Morselt et al., “Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes,” American Journal of Physiology, vol. 294, no. 3, pp. F554–F561, 2008.
[221]  N. Hashida, N. Ohguro, N. Yamazaki et al., “High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome,” Experimental Eye Research, vol. 86, no. 1, pp. 138–149, 2008.
[222]  M. Everts, G. A. Koning, R. J. Kok et al., “In vitro cellular handling and in vivo targeting of E-selectin-directed immunoconjugates and immunoliposomes used for drug delivery to inflamed endothelium,” Pharmaceutical Research, vol. 20, no. 1, pp. 64–72, 2003.
[223]  S. A. ásgeirsdóttir, J. A. A. M. Kamps, H. I. Bakker et al., “Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium,” Molecular Pharmacology, vol. 72, no. 1, pp. 121–131, 2007.
[224]  P. I. Homem de Bittencourt Jr., D. J. Lagranha, A. Maslinkiewicz et al., “LipoCardium: endothelium-directed cyclopentenone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions,” Atherosclerosis, vol. 193, no. 2, pp. 245–258, 2007.
[225]  P. Vader, B. J. Crielaard, S. M. van Dommelen, R. van der Meel, G. Storm, and R. M. Schiffelers, “Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles,” Journal of Controlled Release, vol. 160, no. 2, pp. 211–216, 2012.
[226]  J. M. Kuldo, S. A. Asgeirsdottir, P. J. Zwiers et al., “Targeted adenovirus mediated inhibition of NF-kappaB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo,” Journal of Controlled Release, vol. 166, pp. 57–65, 2013.
[227]  K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nature Reviews Drug Discovery, vol. 8, no. 2, pp. 129–138, 2009.
[228]  C. Wolfrum, S. Shi, K. N. Jayaprakash et al., “Mechanisms and optimization of in vivo delivery of lipophilic siRNAs,” Nature Biotechnology, vol. 25, no. 10, pp. 1149–1157, 2007.
[229]  M. E. Davis, “The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic,” Molecular Pharmaceutics, vol. 6, no. 3, pp. 659–668, 2009.
[230]  S. A. ásgeirsdóttir, E. G. Talman, I. A. de Graaf et al., “Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro—a quantitative study,” Journal of Controlled Release, vol. 141, no. 2, pp. 241–251, 2010.
[231]  J. E. Zuckerman, C. H. J. Choi, H. Han, and M. E. Davis, “Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 8, pp. 3137–3142, 2012.
[232]  J. B. Lee, K. Zhang, Y. Y. C. Tam et al., “Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo,” International Journal of Cancer, vol. 131, no. 5, pp. E781–E790, 2012.
[233]  M. C. Zimmerman, R. P. Dunlay, E. Lazartigues et al., “Requirement for Rac1-dependent NADPH oxidase in the cardiovascular and dipsogenic actions of angiotensin II in the brain,” Circulation Research, vol. 95, no. 5, pp. 532–539, 2004.
[234]  Q. Li, N. Y. Spencer, F. D. Oakley, G. R. Buettner, and J. F. Engelhardt, “Endosomal Nox2 facilitates redox-dependent induction of NF-kB by TNF-α,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1249–1263, 2009.
[235]  P. Lajoie, J. G. Goetz, J. W. Dennis, and I. R. Nabi, “Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane,” Journal of Cell Biology, vol. 185, no. 3, pp. 381–385, 2009.
[236]  M. Ushio-Fukai, “Compartmentalization of redox signaling through NaDPH oxidase-derived ROS,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1289–1299, 2009.
[237]  F. D. Oakley, D. Abbott, Q. Li, and J. F. Engelhardt, “Signaling components of redox active endosomes: the redoxosomes,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1313–1333, 2009.
[238]  D. G. Harrison, M. C. Gongora, T. J. Guzik, and J. Widder, “Oxidative stress and hypertension,” Journal of the American Society of Hypertension, vol. 1, no. 1, pp. 30–44, 2007.
[239]  E. Schulz, T. Gori, and T. Münzel, “Oxidative stress and endothelial dysfunction in hypertension,” Hypertension Research, vol. 34, no. 6, pp. 665–673, 2011.
[240]  A. T. Viau, A. Abuchowski, S. Greenspan, and F. F. Davis, “Safety evaluation of free radical scavengers PEG-catalase and PEG-superoxide dismutase,” Journal of Free Radicals in Biology and Medicine, vol. 2, no. 4, pp. 283–288, 1986.
[241]  C. Danel, S. C. Erzurum, P. Prayssac et al., “Gene therapy for oxidant injury-related diseases: adenovirus-mediated transfer of superoxide dismutase and catalase cDNAs protects against hyperoxia but not against ischemia-reperfusion lung injury,” Human Gene Therapy, vol. 9, no. 10, pp. 1487–1496, 1998.
[242]  M. W. Epperly, V. E. Kagan, C. A. Sikora et al., “Manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) administration protects mice from esophagitis associated with fractionated radiation,” International Journal of Cancer, vol. 96, no. 4, pp. 221–231, 2001.
[243]  M. L. Barnard, R. R. Baker, and S. Matalon, “Mitigation of oxidant injury to lung microvasculature by intratracheal instillation of antioxidant enzymes,” American Journal of Physiolog, vol. 265, no. 4, pp. L340–L345, 1993.
[244]  B. A. Freeman, J. F. Turrens, and Z. Mirza, “Modulation of oxidant lung injury by using liposome-entrapped superoxide dismutase and catalase,” Federation Proceedings, vol. 44, no. 10, pp. 2591–2595, 1985.
[245]  R. P. Bowler, J. Arcaroli, J. D. Crapo, A. Ross, J. W. Slot, and E. Abraham, “Extracellular superoxide dismutase attenuates lung injury after hemorrhage,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 2, pp. 290–294, 2001.
[246]  S. C. Erzurum, P. Lemarchand, M. A. Rosenfeld, J. H. Yoo, and R. G. Crystal, “Protection of human endothelial cells from oxidant injury by adenovirus-mediated transfer of the human catalase cDNA,” Nucleic Acids Research, vol. 21, no. 7, pp. 1607–1612, 1993.
[247]  R. W. Payne, B. M. Murphy, and M. C. Manning, “Product development issues for PEGylated proteins,” Pharmaceutical Development and Technology, vol. 16, no. 5, pp. 423–240, 2010.
[248]  M. J. Joralemon, S. McRae, and T. Emrick, “PEGylated polymers for medicine: from conjugation to self-assembled systems,” Chemical Communications, vol. 46, no. 9, pp. 1377–1393, 2010.
[249]  C. W. White, J. H. Jackson, A. Abuchowski et al., “Polyethylene glycol-attached antioxidant enzymes decrease pulmonary oxygen toxicity in rats,” Journal of Applied Physiology, vol. 66, no. 2, pp. 584–590, 1989.
[250]  X. Yi, M. C. Zimmerman, R. Yang, J. Tong, S. Vinogradov, and A. V. Kabanov, “Pluronic-modified superoxide dismutase 1 attenuates angiotensin II-induced increase in intracellular superoxide in neurons,” Free Radical Biology and Medicine, vol. 49, no. 4, pp. 548–558, 2010.
[251]  S. Lee, S. C. Yang, M. J. Heffernan, W. R. Taylor, and N. Murthy, “Polyketal microparticles: a new delivery vehicle for superoxide dismutase,” Bioconjugate Chemistry, vol. 18, no. 1, pp. 4–7, 2007.
[252]  M. K. Reddy and V. Labhasetwar, “Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury,” FASEB Journal, vol. 23, no. 5, pp. 1384–1395, 2009.
[253]  J. Wen, X. Jiang, Y. Dai et al., “Adenosine deaminase enzyme therapy prevents and reverses the heightened cavernosal relaxation in priapism,” Journal of Sexual Medicine, vol. 7, no. 9, pp. 3011–3022, 2010.
[254]  E. G. Rosenbaugh, J. W. Roat, L. Gao et al., “The attenuation of central angiotensin II-dependent pressor response and intra-neuronal signaling by intracarotid injection of nanoformulated copper/zinc superoxide dismutase,” Biomaterials, vol. 31, no. 19, pp. 5218–5226, 2010.
[255]  T. Matsui, S. I. Yamagishi, K. Nakamura, and H. Inoue, “Bay w 9798, a dihydropyridine structurally related to nifedipine with no calcium channel-blocking properties, inhibits tumour necrosis factor-α-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation,” Journal of International Medical Research, vol. 35, no. 6, pp. 886–891, 2007.
[256]  S. I. Yamagishi, K. Nakamura, and T. Matsui, “Role of oxidative stress in the development of vascular injury and its therapeutic intervention by nifedipine,” Current Medicinal Chemistry, vol. 15, no. 2, pp. 172–177, 2008.
[257]  B. Gao, S. C. Flores, J. A. Leff, S. K. Bose, and J. M. McCord, “Synthesis and anti-inflammatory activity of a chimeric recombinant superoxide dismutase: SOD2/3,” American Journal of Physiology, vol. 284, no. 6, pp. L917–L925, 2003.
[258]  S. J. Lin, S. K. Shyue, M. C. Shih et al., “Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors,” Atherosclerosis, vol. 190, no. 1, pp. 124–134, 2007.
[259]  M. W. Epperly, H. L. Guo, M. Jefferson et al., “Cell phenotype specific kinetics of expression of intratracheally injected manganese superoxide dismutase-plasmid/liposomes (MnSOD-PL) during lung radioprotective gene therapy,” Gene Therapy, vol. 10, no. 2, pp. 163–171, 2003.
[260]  M. Machtay, A. Scherpereel, J. Santiago et al., “Systemic polyethylene glycol-modified (PEGylated) superoxide dismutase and catalase mixture attenuates radiation pulmonary fibrosis in the C57/bl6 mouse,” Radiotherapy and Oncology, vol. 81, no. 2, pp. 196–205, 2006.
[261]  L. Y. L. Chang, M. Subramaniam, B. A. Yoder et al., “A catalytic antioxidant attenuates alveolar structural remodeling in bronchopulmonary dysplasia,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 1, pp. 57–64, 2003.
[262]  Z. Vujaskovic, I. Batinic-Haberle, Z. N. Rabbani et al., “A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury,” Free Radical Biology and Medicine, vol. 33, no. 6, pp. 857–863, 2002.
[263]  V. E. Kagan, P. Wipf, D. Stoyanovsky et al., “Mitochondrial targeting of electron scavenging antioxidants: regulation of selective oxidation vs random chain reactions,” Advanced Drug Delivery Reviews, vol. 61, no. 14, pp. 1375–1385, 2009.
[264]  M. Boissinot, L. A. Kuhn, P. Lee et al., “Rational design and expression of a-heparin-targeted human superoxide dismutase,” Biochemical and Biophysical Research Communications, vol. 190, no. 1, pp. 250–256, 1993.
[265]  D. Hernandez-Saavedra, H. Zhou, and J. M. McCord, “Anti-inflammatory properties of a chimeric recombinant superoxide dismutase: SOD2/3,” Biomedicine and Pharmacotherapy, vol. 59, no. 4, pp. 204–208, 2005.
[266]  N. Watanabe, T. Iwamoto, K. D. Bowen, D. A. Dickinson, M. Torres, and H. J. Forman, “Bio-effectiveness of Tat-catalase conjugate: a potential tool for the identification of H2O2-dependent cellular signal transduction pathways,” Biochemical and Biophysical Research Communications, vol. 303, no. 1, pp. 287–293, 2003.
[267]  K. Nagata, Y. Iwasaki, T. Yamada et al., “Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury,” Respiratory Medicine, vol. 101, no. 4, pp. 800–807, 2007.
[268]  M. W. Epperly, C. A. Sikora, S. J. DeFilippi et al., “Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy,” Biology of Blood and Marrow Transplantation, vol. 8, no. 4, pp. 175–187, 2002.
[269]  G. S. Supinski and L. A. Callahan, “Polyethylene glycol-superoxide dismutase prevents endotoxin-induced cardiac dysfunction,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 11, pp. 1240–1247, 2006.
[270]  R. Igarashi, J. Hoshino, A. Ochiai, Y. Morizawa, and Y. Mizushima, “Lecithinized superoxide dismutase enhances its pharmacologic potency by increasing its cell membrane affinity,” Journal of Pharmacology and Experimental Therapeutics, vol. 271, no. 3, pp. 1672–1677, 1994.
[271]  D. D. H. Koo, K. I. Welsh, N. E. J. West et al., “Endothelial cell protection against ischemia/reperfusion injury by lecithinized superoxide dismutase,” Kidney International, vol. 60, no. 2, pp. 786–796, 2001.
[272]  T. Ishihara, K. I. Tanaka, Y. Tasaka et al., “Therapeutic effect of lecithinized superoxide dismutase against colitis,” Journal of Pharmacology and Experimental Therapeutics, vol. 328, no. 1, pp. 152–164, 2009.
[273]  C. S. Bonder, D. Knight, D. Hernandez-Saavedra, J. M. McCord, and P. Kubes, “Chimeric SOD2/3 inhibits at the endothelial-neutrophil interface to limit vascular dysfunction in ischemia-reperfusion,” American Journal of Physiology, vol. 287, no. 3, pp. G676–G684, 2004.
[274]  J. Jiang, I. Kurnikov, N. A. Belikova et al., “Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides,” Journal of Pharmacology and Experimental Therapeutics, vol. 320, no. 3, pp. 1050–1060, 2007.
[275]  R. J. Folz, A. M. Abushamaa, and H. B. Suliman, “Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia,” Journal of Clinical Investigation, vol. 103, no. 7, pp. 1055–1066, 1999.
[276]  V. R. Muzykantov, D. V. Sakharov, and S. P. Domogatsky, “Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide,” American Journal of Pathology, vol. 128, no. 2, pp. 276–285, 1987.
[277]  D. V. Sakharov, V. R. Muzykantov, S. P. Domogatsky, and S. M. Danilov, “Protection of cultured endothelial cells from hydrogen peroxide-induced injury by antibody-conjugated catalase,” Biochimica et Biophysica Acta, vol. 930, no. 2, pp. 140–144, 1987.
[278]  V. V. Shuvaev, S. Tliba, M. Nakada, S. M. Albelda, and V. R. Muzykantov, “Platelet-endothelial cell adhesion molecule-1-directed endothelial targeting of superoxide dismutase alleviates oxidative stress caused by either extracellular or intracellular superoxide,” Journal of Pharmacology and Experimental Therapeutics, vol. 323, no. 2, pp. 450–457, 2007.
[279]  V. V. Shuvaev, M. Christofidou-Solomidou, F. Bhora et al., “Targeted detoxification of selected reactive oxygen species in the vascular endothelium,” Journal of Pharmacology and Experimental Therapeutics, vol. 331, no. 2, pp. 404–411, 2009.
[280]  V. V. Shuvaev and V. R. Muzykantov, “Targeted modulation of reactive oxygen species in the vascular endothelium,” Journal of Controlled Release, vol. 153, no. 1, pp. 56–63, 2011.
[281]  J. Han, V. V. Shuvaev, and V. R. Muzykantov, “Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor,” Journal of Pharmacology and Experimental Therapeutics, vol. 338, no. 1, pp. 82–91, 2011.
[282]  J. Han, V. V. Shuvaev, and V. R. Muzykantov, “Targeted interception of signaling reactive oxygen species in the vascular endothelium,” Therapeutic Delivery, vol. 3, no. 2, pp. 263–276, 2012.
[283]  S. Muro, M. Mateescu, C. Gajewski, M. Robinson, V. R. Muzykantov, and M. Koval, “Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins,” American Journal of Physiology, vol. 290, no. 5, pp. L809–L817, 2006.
[284]  T. D. Dziubla, A. Karim, and V. R. Muzykantov, “Polymer nanocarriers protecting active enzyme cargo against proteolysis,” Journal of Controlled Release, vol. 102, no. 2, pp. 427–439, 2005.
[285]  E. A. Simone, T. D. Dziubla, E. Arguiri et al., “Loading PEG-catalase into filamentous and spherical polymer nanocarriers,” Pharmaceutical Research, vol. 26, no. 1, pp. 250–260, 2009.
[286]  E. A. Simone, T. D. Dziubla, D. E. Discher, and V. R. Muzykantov, “Filamentous polymer nanocarriers of tunable stiffness that encapsulate the therapeutic enzyme catalase,” Biomacromolecules, vol. 10, no. 6, pp. 1324–1330, 2009.
[287]  E. D. Hood, C. F. Greineder, C. Dodia et al., “Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo,” Journal of Controlled Release, vol. 163, no. 2, pp. 161–169, 2012.
[288]  E. Beutler, “Lysosomal storage diseases: natural history and ethical and economic aspects,” Molecular Genetics and Metabolism, vol. 88, no. 3, pp. 208–215, 2006.
[289]  A. H. Futerman and G. van Meer, “The cell biology of lysosomal storage disorders,” Nature Reviews Molecular Cell Biology, vol. 5, no. 7, pp. 554–565, 2004.
[290]  P. J. Meikle, J. J. Hopwood, A. E. Clague, and W. F. Carey, “Prevalence of lysosomal storage disorders,” Journal of the American Medical Association, vol. 281, no. 3, pp. 249–254, 1999.
[291]  G. A. Grabowski, “Delivery of lysosomal enzymes for therapeutic use: glucocerebrosidase as an example,” Expert Opinion on Drug Delivery, vol. 3, no. 6, pp. 771–782, 2006.
[292]  R. O. Brady and R. Schiffmann, “Enzyme-replacement therapy for metabolic storage disorders,” Lancet Neurology, vol. 3, no. 12, pp. 752–756, 2004.
[293]  R. J. Desnick and E. H. Schuchman, “Enzyme replacement and enhancement therapies: lessons from lysosomal disorders,” Nature Reviews Genetics, vol. 3, no. 12, pp. 954–966, 2002.
[294]  M. G. Rosenfeld, G. Kreibich, and D. Popov, “Biosynthesis of lysosomal hydrolases: their synthesis in bound polysomes and the role of co- and post-translational processing in determining their subcellular distribution,” Journal of Cell Biology, vol. 93, no. 1, pp. 135–143, 1982.
[295]  H. Du, M. Levine, C. Ganesa, D. P. Witte, E. S. Cole, and G. A. Grabowski, “The role of mannosylated enzyme and the mannose receptor in enzyme replacement therapy,” American Journal of Human Genetics, vol. 77, no. 6, pp. 1061–1074, 2005.
[296]  E. F. Neufeld, “The uptake of enzymes into lysosomes: an overview,” Birth Defects, vol. 16, no. 1, pp. 77–84, 1980.
[297]  S. R. P. Miranda, X. He, C. M. Simonaro et al., “Infusion of recombinant human acid sphingomyelinase into Niemann-Pick disease mice leads to visceral, but not neurological, correction of the pathophysiology,” FASEB Journal, vol. 14, no. 13, pp. 1988–1995, 2000.
[298]  E. H. Schuchman and R. J. Desnick, “Niemann-pick disease types A and B: acid sphingomyelinase deficiencies,” in Lysosomal Disorders the Metabolic and Molecular Bases of Inherited Disease, C. Scriver, A. Beaudet, W. Sly et al., Eds., chapter 16, McGraw-Hill, 8th edition, 2000.
[299]  J. S. Bae, K. H. Jang, E. H. Schuchman, and H. K. Jin, “Comparative effects of recombinant acid sphingomyelinase administration by different routes in Niemann-Pick disease mice,” Experimental Animals, vol. 53, no. 5, pp. 417–421, 2004.
[300]  X. He, S. R. P. Miranda, X. Xiong, A. Dagan, S. Gatt, and E. H. Schuchman, “Characterization of human acid sphingomyelinase purified from the media of overexpressing Chinese hamster ovary cells,” Biochimica et Biophysica Acta, vol. 1432, no. 2, pp. 251–264, 1999.
[301]  S. Muro, E. H. Schuchman, and V. R. Muzykantov, “Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis,” Molecular Therapy, vol. 13, no. 1, pp. 135–141, 2006.
[302]  S. D. Marlin and T. A. Springer, “Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1),” Cell, vol. 51, no. 5, pp. 813–819, 1987.
[303]  M. P. Bevilacqua, “Endothelial-leukocyte adhesion molecules,” Annual Review of Immunology, vol. 11, pp. 767–804, 1993.
[304]  S. Muro, “VCAM-1 and ICAM-1,” in Endothelial Biomedicine, W. C. Aird, Ed., pp. 1058–1070, Cambridge University Press, 2007.
[305]  T. DeGraba, S. Azhar, F. Dignat-George et al., “Profile of endothelial and leukocyte activation in Fabry patients,” Annals of Neurology, vol. 47, pp. 229–233, 2000.
[306]  C. Garnacho, R. Dhami, E. Simone et al., “Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 2, pp. 400–408, 2008.
[307]  J. Hsu, D. Serrano, T. Bhowmick et al., “Enhanced endothelial delivery and biochemical effects of α-galactosidase by ICAM-1-targeted nanocarriers for Fabry disease,” Journal of Controlled Release, vol. 149, no. 3, pp. 323–331, 2011.
[308]  J. Hsu, L. Northrup, T. Bhowmick, and S. Muro, “Enhanced delivery of α-glucosidase for Pompe disease by ICAM-1-targeted nanocarriers: comparative performance of a strategy for three distinct lysosomal storage disorders,” Nanomedicine, vol. 8, no. 5, pp. 731–739, 2012.
[309]  J. Papademetriou, C. Garnacho, D. Serrano, T. Bhowmick, E. H. Schuchman, and S. Muro, “Comparative binding, endocytosis, and biodistribution of antibodies and antibody-coated carriers for targeted delivery of lysosomal enzymes to ICAM-1 versus transferrin receptor,” Journal of Inherited Metabolic Disease, vol. 36, no. 3, pp. 467–477, 2013.
[310]  C. T. Esmon, “Inflammation and thrombosis,” Journal of Thrombosis and Haemostasis, vol. 1, no. 7, pp. 1343–1348, 2003.
[311]  D. A. Dichek, J. Anderson, A. B. Kelly, S. R. Hanson, and L. A. Harker, “Enhanced in vivo antithrombotic effects of endothelial cells expressing recombinant plasminogen activators transduced with retroviral vectors,” Circulation, vol. 93, no. 2, pp. 301–309, 1996.
[312]  J. M. Kiely, M. I. Cybulsky, F. W. Luscinskas, and M. A. Gimbrone Jr., “Immunoselective targeting of an anti-thrombin agent to the surface of cytokine-activated vascular endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 8, pp. 1211–1218, 1995.
[313]  V. R. Muzykantov, E. S. Barnathan, E. N. Atochina, A. Kuo, S. M. Danilov, and A. B. Fisher, “Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature,” Journal of Pharmacology and Experimental Therapeutics, vol. 279, no. 2, pp. 1026–1034, 1996.
[314]  D. D. Spragg, D. R. Alford, R. Greferath et al., “Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8795–8800, 1997.
[315]  S. S. Husain, “Single-chain urokinase-type plasminogen activator does not possess measurable intrinsic amidolytic or plasminogen activator activities,” Biochemistry, vol. 30, no. 23, pp. 5797–5805, 1991.
[316]  A. Ichinose, K. Fujikawa, and T. Suyama, “The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin,” Journal of Biological Chemistry, vol. 261, no. 8, pp. 3486–3489, 1986.
[317]  W. P. Yang, J. Goldstein, R. Procyk, G. R. Matsueda, and S. Y. Shaw, “Design and evaluation of a thrombin-activable plasminogen activator,” Biochemistry, vol. 33, no. 8, pp. 2306–2312, 1994.
[318]  B. S. Ding, N. Hong, J. C. Murciano et al., “Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-1 in the pulmonary vasculature,” Blood, vol. 111, no. 4, pp. 1999–2006, 2008.
[319]  C. T. Esmon, “Inflammation and the activated protein C anticoagulant pathway,” Seminars in Thrombosis and Hemostasis, vol. 32, supplement 1, pp. 49–60, 2006.
[320]  Y. X. Wang, C. Wu, J. Vincelette et al., “Amplified anticoagulant activity of tissue factor-targeted thrombomodulin,” Thrombosis and Haemostasis, vol. 96, no. 3, pp. 317–324, 2006.
[321]  B. S. Ding, N. Hong, M. Christofidou-Solomidou et al., “Anchoring fusion thrombomodulin to the endothelial lumen protects against injury-induced lung thrombosis and inflammation,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 3, pp. 247–256, 2009.
[322]  E. Simone, B. S. Ding, and V. Muzykantov, “Targeted delivery of therapeutics to endothelium,” Cell and Tissue Research, vol. 335, no. 1, pp. 283–300, 2009.
[323]  M. S. Runge, T. Quertermous, P. J. Zavodny et al., “A recombinant chimeric plasminogen activator with high affinity for fibrin has increased thrombolytic potency in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 22, pp. 10337–10341, 1991.
[324]  P. Holvoet, Y. Laroche, J. M. Stassen et al., “Pharmacokinetic and thrombolytic properties of chimeric plasminogen activators consisting of a single-chain Fv fragment of a fibrin-specific antibody fused to single-chain urokinase,” Blood, vol. 81, no. 3, pp. 696–703, 1993.
[325]  K. Ley, “Pathways and bottlenecks in the web of inflammatory adhesion molecules and chemoattractants,” Immunologic Research, vol. 24, no. 1, pp. 87–95, 2001.
[326]  H. Ulbrich, E. E. Eriksson, and L. Lindbom, “Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease,” Trends in Pharmacological Sciences, vol. 24, no. 12, pp. 640–647, 2003.
[327]  J. M. Harlan and R. K. Winn, “Leukocyte-endothelial interactions: clinical trials of anti-adhesion therapy,” Critical Care Medicine, vol. 30, no. 5, pp. S214–S219, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133