全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Perturbation Solution for Radiating Viscoelastic Fluid Flow and Heat Transfer with Convective Boundary Condition in Nonuniform Channel with Hall Current and Chemical Reaction

DOI: 10.1155/2013/935481

Full-Text   Cite this paper   Add to My Lib

Abstract:

A mathematical analysis has been performed for heat and mass transfer of a time-dependent MHD flow of an electrically conducting viscoelastic fluid in nonuniform vertical channel with convective boundary condition. The fluid flow is considered between a vertical long wavy wall and a parallel flat wall saturated with the porous medium. The effects of thermal radiation, heat absorption, chemical reaction, and Hall current are taken into account. The prevailing nonlinear partial differential equations are derived by considering Boussinesq approximation, and the same equations are solved analytically using perturbation technique. Further the expressions for skin friction, Nusselt number, and Sherwood number are presented. The effects of various pertinent parameters on different flow fields are analyzed graphically and tabularly. It is found that effects of Hall parameter and Biot number are unfavorable on velocity profiles, but this trend is reverse for the effect of thermal and solutal Grashof numbers. The expressions of different flow fields satisfy the imposed boundary conditions, which is shown in all graphs; this implies accuracy of the solution. 1. Introduction The study of viscoelastic fluid has become important in the last few years. Qualitative analysis of these studies has significant bearing on several industrial applications such as polymer sheet extrusion from a dye and drawing of plastic firms. When manufacturing processes at high temperature need cooling, the flow may need viscoelastic fluid to produce a good effect or reduce the temperature. On the other hand, the flow and heat transfer of a viscoelastic fluid between parallel plates have significant role in many engineering fields such as petroleum production, chemical catalytic reactors, and solar power collectors. Boundary layer treatment for an idealized viscoelastic fluid was introduced by Beard and Walters [1]. There has been a continued interest in the investigation of natural convection heat transfer of non-Newtonian fluid, which exhibits the viscoelasticity. Recently, Rajagopal and Na [2] have studied the heat transfer analysis in the forced convection flow of a visco-elastic fluid by considering the Walters model. The problem of MHD flow and heat transfer has wide range of applications in emerging fields due to an electro-magnetic field are relevant to many practical applications in geophysical and astrophysical situations, the metallurgy industry, and cooling of continuous strips and filaments drawn through a quiescent fluid. Sarpkaya [3] was the first who had studied the MHD

References

[1]  D. W. Beard and K. Walters, “Elastico-viscous boundary layer flows I. Two dimensional flow near a stagnation point,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 60, pp. 667–674, 1964.
[2]  K. R. Rajagopal and T. Y. Na, “On Stokes' problem for a non-Newtonian fluid,” Acta Mechanica, vol. 48, no. 3-4, pp. 233–239, 1983.
[3]  T. Sarpkaya, “Flow of non-Newtonian fluids in a magnetic field,” AIChE Journal, vol. 7, pp. 324–328, 1961.
[4]  C. C. Chang and T. S. Lundgren, “Duct flow in magnetohydrodynamics,” Zeitschrift für angewandte Mathematik und Physik, vol. 12, no. 2, pp. 100–114, 1961.
[5]  H. A. Attia and K. M. Ewis, “Unsteady MHD couette flow with heat transfer of a viscoelastic fluid under exponential decaying pressure gradient,” Tamkang Journal of Science and Engineering, vol. 13, no. 4, pp. 359–364, 2010.
[6]  M. E. Sayed-Ahmed and H. A. Attia, “MHD flow and heat transfer in a rectangular duct with temperature dependent viscosity and Hall effect,” International Communications in Heat and Mass Transfer, vol. 27, no. 8, pp. 1177–1187, 2000.
[7]  H. A. Attia and M. A. M. Abdeen, “Unsteady hartmann flow with heat transfer of a viscoelastic fluid under exponential decaying pressure gradient,” Engineering MECHANICS, vol. 19, no. 5, pp. 37–44, 2012.
[8]  H. A. Attia, “Hall effect on couette flow with heat transfer of a dusty conducting fluid between parallel porous plates under exponential decaying pressure gradient,” Journal of Mechanical Science and Technology, vol. 20, no. 4, pp. 569–579, 2006.
[9]  T. Hayat and O. U. Mehmood, “Slip effects on MHD flow of third order fluid in a planar channel,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1363–1377, 2011.
[10]  Kh. S. Mekheimer and M. A. El Kot, “Influence of magnetic field and Hall currents on blood flow through a stenotic artery,” Applied Mathematics and Mechanics, vol. 29, no. 8, pp. 1093–1104, 2008.
[11]  D. Pal and B. Talukdar, “Perturbation analysis of unsteady magnetohydrodynamic convective heat and mass transfer in a boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1813–1830, 2010.
[12]  A. J. Chamkha, “MHD flow of a uniformly streched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction,” International Communications in Heat and Mass Transfer, vol. 30, no. 3, pp. 413–422, 2003.
[13]  I. J. Uwanta and E. Omokhuale, “Viscoelastic fluid flow in a fixed plane with heat and mass transfer,” Research Journal of Mathematics and Statistics, vol. 4, no. 3, pp. 63–69, 2012.
[14]  S. S. Saxena and G. K. Dubey, “MHD free convection heat and mass transfer flow of viscoelastic fluid embedded in a porous medium of variable permeability with radiation effect and heat source in slip flow regime,” Advances in Applied Science Research, vol. 2, no. 5, pp. 115–129, 2011.
[15]  M. Massoudi and A. K. Uguz, “Chemically-reacting fluids with variable transport properties,” Applied Mathematics and Computation, vol. 219, pp. 1761–1775, 2012.
[16]  R. C. Bataller, “Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition,” Applied Mathematics and Computation, vol. 206, no. 2, pp. 832–840, 2008.
[17]  O. D. Makinde and T. Chinyoka, “Numerical study of unsteady hydromagnetic Generalized Couette flow of a reactive third-grade fluid with asymmetric convective cooling,” Computers and Mathematics with Applications, vol. 61, no. 4, pp. 1167–1179, 2011.
[18]  S. Yao, T. Fang, and Y. Zhong, “Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, pp. 752–760, 2011.
[19]  O. D. Makinde and A. Aziz, “MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition,” International Journal of Thermal Sciences, vol. 49, no. 9, pp. 1813–1820, 2010.
[20]  G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, NY, USA, 1965.
[21]  T. Hayat and M. Nawaz, “Soret and Dufour effects on the mixed convection flow of a second grade fluid subject to Hall and ion-slip currents,” International Journal for Numerical Methods in Fluids, vol. 67, no. 9, pp. 1073–1099, 2011.
[22]  U. N. Das, “Free convective MHD flow and heat transfer in a viscous incompressible fluid confined between a long vertical wavy wall and a parallel flat wall,” Indian Journal of Pure and Applied Mathematics, vol. 23, pp. 295–304, 1992.
[23]  Y. Abd elmaboud and Kh. S. Mekheimer, “Unsteady pulsatile flow through a vertical constricted annulus with heat transfer,” Zeitschrift für Naturforschung A, vol. 67, pp. 185–194, 2012.
[24]  B. Ni?eno and E. Nobile, “Numerical analysis of fluid flow and heat transfer in periodic wavy channels,” International Journal of Heat and Fluid Flow, vol. 22, no. 2, pp. 156–167, 2001.
[25]  Kh. S. Mekheimer, S. Z. A. Husseny, and Y. Abd Elmaboud, “Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel,” Numerical Methods for Partial Differential Equations, vol. 26, no. 4, pp. 747–770, 2010.
[26]  R. Sivaraj and B. Rushi Kumar, “Unsteady MHD dusty viscoelastic fluid Couette flow in an irregular channel with varying mass diffusion,” International Journal of Heat and Mass Transfer, vol. 55, no. 11-12, pp. 3076–3089, 2012.
[27]  R. Taneja and N. C. Jain, “MHD flow with slip effects and temperature-dependent heat source in a viscous incompressible fluid confined between a long vertical wavy wall and a parallel flat wall,” Defence Science Journal, vol. 54, no. 1, pp. 21–29, 2004.
[28]  K. Walters, On Second-Order Effect in Elasticity,Plasticity and Fluid Mechanics, IUTAM Int. Symp., Pergamon Press, New York, NY, USA, 1964.
[29]  A. C. Cogley, S. E. Giles, and W. G. Vincent, “Differential approximation to radiative heat transfer in a nongrey gas near equilibrium,” AIAA Journal, vol. 6, no. 3, pp. 551–553, 1968.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133