全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analytical Solution of Nonlinear Boundary Value Problem for Fin Efficiency of Convective Straight Fins with Temperature-Dependent Thermal Conductivity

DOI: 10.1155/2013/282481

Full-Text   Cite this paper   Add to My Lib

Abstract:

We have employed homotopy analysis method (HAM) to evaluate the approximate analytical solution of the nonlinear equation arising in the convective straight fins with temperature-dependent thermal conductivity problem. Solutions are presented for the dimensionless temperature distribution and fin efficiency of the nonlinear equation. The analytical results are compared with previous work and satisfactory agreement is noted. 1. Introduction The discipline of heat transfer, typically considered an aspect of mechanical engineering and chemical engineering, deals with specific applied methods by which thermal energy in a system is generated, or converted, or transferred to another system. Heat transfer includes the mechanisms of heat conduction, thermal radiation, and mass transfer. The analysis of extended surface heat transfer is extensively presented by Kraus et al. [1]. Arslanturk [2] used decomposition method to evaluate the temperature distribution and analytical expression for the fin efficiency. In the study of heat transfer, a fin is a surface that extends from an object to increase the rate of heat transfer to or from the environment by increasing convection. Incropera and Dewitt [3] presented a series of studies on the topic of heat transfer. Mokheimer [4] discussed a series of fin-efficiency curves for annular fins of rectangular, constant heat flow area, triangular, concave parabolic, and convex parabolic profiles for a wide range of radius ratios, and the dimensionless parameter based on the locally variable heat transfer coefficient. The optimum dimensions of circular fins with variable profile and temperature-dependent thermal conductivity have been obtained by Zubair et al. [5]. A new approach to calculate thermal performance of a singular fin with variable thermal properties has been presented by Kou et al. [6]. Joneidi et al. [7] studied an analytical solution of fin efficiency of convective straight fins with temperature-dependent thermal conductivity by the DTM. In this present paper, we first apply homotopy analysis method to obtain an approximation of analytical expression of fin efficiency of convective straight fins with temperature-dependent thermal conductivity. This problem is compared with Joneidi et al. [7]. 2. Mathematical Formulation of the Boundary Value Problem Consider a straight fin with a temperature-dependent thermal conductivity, arbitrary constant cross-sectional area ; perimeter and length ??(see Figure 1). The fin is attached to a base surface of temperature and extends into a fluid of temperature , and its tip is

References

[1]  A. Kraus, A. Aziz, and J. Welty, Extended Surface Heat Transfer, John Wiley & Sons, New York, NY, USA, 2001.
[2]  C. Arslanturk, “A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity,” International Communications in Heat and Mass Transfer, vol. 32, no. 6, pp. 831–841, 2005.
[3]  F. P. Incropera and D. P. Dewitt, Introduction to Heat Transfer, John Wiley & Sons, New York, NY, USA, 3rd edition, 1996.
[4]  E. M. A. Mokheimer, “Performance of annular fins with different profiles subject to variable heat transfer coefficient,” International Journal of Heat and Mass Transfer, vol. 45, no. 17, pp. 3631–3642, 2002.
[5]  S. M. Zubair, A. Z. Al-Garni, and J. S. Nizami, “The optimal dimensions of circular fins with variable profile and temperature-dependent thermal conductivity,” International Journal of Heat and Mass Transfer, vol. 39, no. 16, pp. 3431–3439, 1996.
[6]  H.-S. Kou, J.-J. Lee, and C.-Y. Lai, “Thermal analysis of a longitudinal fin with variable thermal properties by recursive formulation,” International Journal of Heat and Mass Transfer, vol. 48, no. 11, pp. 2266–2277, 2005.
[7]  A. A. Joneidi, D. D. Ganji, and M. Babaelahi, “Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity,” International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 757–762, 2009.
[8]  S. J. Liao, The proposed homotopy analysis technique for the solution of non linear problems [Ph.D. thesis], Shanghai Jiao Tong University, 1992.
[9]  S.-J. Liao, “An approximate solution technique not depending on small parameters: a special example,” International Journal of Non-Linear Mechanics, vol. 30, no. 3, pp. 371–380, 1995.
[10]  S. J. Liao, “On the homotopy analysis method for nonlinear problems,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 499–513, 2004.
[11]  S. J. Liao, “An optimal homotopy-analysis approach for strongly nonlinear differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 8, pp. 2003–2016, 2010.
[12]  S. J. Liao, The Homotopy Analysis Method in Non Linear Differential Equations, Springer, New York, NY, USA, 2012.
[13]  G. Domairry and H. Bararnia, “An approximation of the analytic solution of some nonlinear heat transfer equations: a survey by using homotopy analysis method,” Advanced Studies in Theoretical Physics, vol. 2, no. 11, pp. 507–518, 2008.
[14]  H. Jafari, C. Chun, and S. M. Saeidy, “Analytical solution for nonlinear gas dynamic Homotopy analysis method,” Applied Mathematics, vol. 4, pp. 149–154, 2009.
[15]  S. J. Liao, Beyond Perturbation Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC, Boca Raton, Fla, USA, 1st edition, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133