全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermodynamical Analysis of the Flow and Heat Transfer over a Static and a Moving Wedge

DOI: 10.1155/2013/264095

Full-Text   Cite this paper   Add to My Lib

Abstract:

The first and second law characteristics of fluid flow and heat transfer over a static and a moving wedge are investigated. With the help of suitable similarity transformations, the governing boundary layer equations for the velocity and temperature fields are transformed into ordinary differential equations and are solved numerically. The velocity and the temperature profiles are obtained for various parameters and are utilized to compute the entropy generation number Ns and the Bejan number Be. The effects of various physical parameters on the entropy generation number and the Bejan number are depicted through graphs and are discussed qualitatively. It is observed that the entropy production rate is less in case of wedge moving in the opposite direction to flow as compared to static wedge. 1. Introduction Newton’s second law of motion and laws of thermodynamics are the fundamental principles on which all the flow and heat transfer systems are built today. All other laws play a supportive role. First law of thermodynamics gives information about the energy of the system quantitatively. On the other hand, second law of thermodynamics states that all real life processes are irreversible. The irreversibility of the processes is measured by entropy generation. The pioneer work on entropy generation in flow systems was done by Bejan [1, 2]. He showed that the engineering design of a thermal system can be improved by minimizing the entropy generation. Later on, a lot of research has been done by many other investigators by taking different geometrical configurations related to the thermally designed systems and fluid flow processes. Sahin [3] analyzed the entropy effects in viscous fluid flow in a circular duct with the isothermal boundary condition. The first and second law characteristics of fluid flow and heat transfer in a channel having two parallel plates with a finite gap between them were analytically investigated by Mahmud and Fraser [4]. Yilbas et al. [5] discussed the entropy production effects in a semiblocked pipe by taking into consideration the swirling effects. The influence of magnetic field on entropy generation in laminar forced flow past a horizontal flat plate was examined by Al-Odat et al. [6]. Selamet and Arpaci [7] investigated the entropy effects in boundary layer flows. Makinde and Osalusi [8] studied entropy effects in a liquid film falling along an inclined heated porous flat plate. Makinde [9] extended his work and analyzed the irreversibility effects in non-Newtonian liquid film falling under the influence of gravity force. The

References

[1]  A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” Journal of Heat Transfer, vol. 101, no. 4, pp. 718–725, 1979.
[2]  A. Bejan, Entropy Generation Through Heat and Fluid Flow, John Wiley and Sons, Toronto, Canada, 1994.
[3]  A. Z. Sahin, “Second law analysis of laminar viscous flow through a duct subjected to constant wall temperature,” Journal of Heat Transfer, vol. 120, pp. 76–83, 1998.
[4]  S. Mahmud and R. A. Fraser, “Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates,” Exergy, vol. 2, pp. 140–146, 2002.
[5]  B. S. Yilbas, S. Z. Shuja, and M. O. Budair, “Second law analysis of a swirling flow in a circular duct with restriction,” International Journal of Heat and Mass Transfer, vol. 42, no. 21, pp. 4027–4041, 1999.
[6]  M. Q. Al-Odat, R. A. Damseh, and M. A. Al-Nimr, “Effect of magnetic field on entropy generation due to laminar forced convection past a horizontal flat plate,” Entropy, vol. 6, no. 3, pp. 293–303, 2004.
[7]  A. Selamet and V. S. Arpaci, “Entropy production in boundary layers,” Journal of Thermophysics and Heat Transfer, vol. 4, no. 3, pp. 404–407, 1990.
[8]  O. D. Makinde and E. Osalusi, “Entropy generation in a liquid film falling along an inclined porous heated plate,” Mechanics Research Communications, vol. 33, no. 5, pp. 692–698, 2006.
[9]  O. D. Makinde, “Irreversibility analysis for a gravity driven non-Newtonian liquid film along an inclined isothermal plate,” Physica Scripta, vol. 74, no. 6, article 007, pp. 642–645, 2006.
[10]  A. Arikoglu, I. Ozkol, and G. Komurgoz, “Effect of slip on entropy generation in a single rotating disk in MHD flow,” Applied Energy, vol. 85, no. 12, pp. 1225–1236, 2008.
[11]  O. D. Makinde, “Irreversibility analysis of variable viscosity channel flow with convective cooling at the walls,” Canadian Journal of Physics, vol. 86, no. 2, pp. 383–389, 2008.
[12]  O. D. Makinde, “Thermodynamic second law analysis for a gravity-driven variable viscosity liquid film along an inclined heated plate with convective cooling,” Journal of Mechanical Science and Technology, vol. 24, no. 4, pp. 899–908, 2010.
[13]  A. Réveillère and A. C. Bayta?, “Minimum entropy generation for laminar boundary layer flow over a permeable plate,” International Journal of Exergy, vol. 7, no. 2, pp. 164–177, 2010.
[14]  O. D. Makinde and O. A. Bég, “On inherent irreversibility in a reactive hydromagnetic channel flow,” Journal of Thermal Science, vol. 19, no. 1, pp. 72–79, 2010.
[15]  A. Tamayol, K. Hooman, and M. Bahrami, “Thermal analysis of flow in a porous medium over a permeable stretching wall,” Transport in Porous Media, vol. 85, no. 3, pp. 661–676, 2010.
[16]  O. D. Makinde, “Second law analysis for variable viscosity hydromagnetic boundary layer flow with thermal radiation and Newtonian heating,” Entropy, vol. 13, no. 8, pp. 1446–1464, 2011.
[17]  O. D. Makinde and A. Aziz, “Analysis of entropy generation and thermal stability in a long hollow cylinder with asymmetry convective cooling,” Heat and Mass Transfer, vol. 47, no. 11, pp. 1407–1415, 2011.
[18]  C.-K. Chen, H.-Y. Lai, and C.-C. Liu, “Numerical analysis of entropy generation in mixed convection flow with viscous dissipation effects in vertical channel,” International Communications in Heat and Mass Transfer, vol. 38, no. 3, pp. 285–290, 2011.
[19]  A. S. Butt, S. Munawar, A. Ali, and A. Mehmood, “Effect of viscoelasticity on entropy generation in a porous medium over a stretching plate,” World Applied Sciences Journal, vol. 17, no. 4, pp. 516–523, 2012.
[20]  A. S. Butt, S. Munawar, A. Ali, and A. Mehmood, “Entropy generation in hydrodynamic slip flow over a vertical plate with convective boundary,” Journal of Mechanical Science and Technology, vol. 26, no. 9, pp. 2977–2984, 2012.
[21]  A. S. Butt and A. Ali, “Effects of magnetic field on entropy generation in flow and heat transfer due to radially stretching surface,” Chinese Physics Letters, vol. 30, no. 2, pp. 02704–02708, 2012.
[22]  S. Munawar and M. A. Ali, “Thermal analysis of the flow over an oscillatory stretching cylinder,” Physica Scripta, vol. 86, Article ID 065401, 2012.
[23]  L. C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, UK, 1975.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133