全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Passive and Active Restoration Strategies to Activate Soil Biogeochemical Nutrient Cycles in a Degraded Tropical Dry Land

DOI: 10.1155/2013/461984

Full-Text   Cite this paper   Add to My Lib

Abstract:

The potential use of two restoration strategies to activate biogeochemical nutrient cycles in degraded soils in Colombia was studied. The active model was represented by forest plantations of neem (Azadirachta indica) (FPN), while the passive model by successional patches of native plant species was dominated by mosquero (Croton leptostachyus) (SPM). In the field plots fine-litter traps and litter-bags were established; samples of standing litter and surface soil samples (0–10?cm) were collected for chemical analyses during a year. The results indicated that the annual contributions of fine litterfall in FPN and SPM were 557.5 and 902.2?kg?ha?1, respectively. The annual constant of decomposition of fine litter (k) was 1.58 for neem and 3.40 for mosquero. Consequently, the annual real returns of organic material and carbon into the soil from the leaf litterfall decomposition were 146 and 36?kg ha?1?yr?1 for FPN and 462 and 111 kg ha?1?yr?1 for SPM, respectively. Although both strategies showed potential to activate soil biogeochemical cycles with respect to control sites (without vegetation), the superiority of the passive strategy to supply fine litter and improve soil properties was reflected in higher values of soil organic matter content and cation exchange capacity. 1. Introduction Land degradation in arid and semiarid lands increases as a result of soil misuse or mismanagement, which, together with climatic variations, may promote desertification and reduces soil productivity [1, 2]. In Colombia, 78.9% of dry lands show some degree of desertification, mainly due to soil erosion by overgrazing and soil salinity [3]. Passive and active restoration strategies have been proposed to restore the functioning of ecological processes [4]. Passive restoration strategies imply minimal human intervention and are based on natural succession process, and in this way the restorer has a passive role regarding the process. On the other hand, active restoration strategies include planting trees at high density and their respective management [5]; this strategy implies a more active role of the restorer. Although passive restoration strategies are simple, inexpensive, and based on natural regeneration processes, they are not always successful [6, 7]. Alternatively, active restoration strategies accelerate the restoration of ecosystem functioning through the activation of soil biogeochemical cycling of nutrients and carbon sequestration [4]. The hypothesis of this study is that the activation of soil biogeochemical nutrient cycles and soil quality improvement of

References

[1]  Y. Zha and J. Gao, “Characteristics of desertification and its rehabilitation in China,” Journal of Arid Environments, vol. 37, no. 3, pp. 419–432, 1997.
[2]  J. F. Reynolds and D. M. Stafford Smith, Global Desertification: Do Humans Cause Deserts? Vol. 88, University Press, Berlin, Germany, 2002.
[3]  Plan de Acción Nacional de Lucha Contra la Desertificación y la Sequía en Colombia (PAN), Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá, Colombia, 2004.
[4]  D. Celentano, R. A. Zahawi, B. Finegan, R. Ostertag, R. J. Cole, and K. D. Holl, “Litterfall dynamics under different tropical forest restoration strategies in Costa Rica,” Biotropica, vol. 43, no. 3, pp. 279–287, 2011.
[5]  S. D. Reay and D. A. Norton, “Assessing the success of restoration plantings in a temperate New Zealand forest,” Restoration Ecology, vol. 7, no. 3, pp. 298–308, 1999.
[6]  K. D. Holl, “Tropical moist forest restoration,” in Handbook of Ecological Restoration, M. R. Perrow and A. J. Davy, Eds., pp. 539–558, Cambridge University Press, Cambridge, UK, 2002.
[7]  J. Schrautzer, A. Rinker, K. Jensen, F. Muller, P. Schwartze, and C. Dier Ben, “Succession and restoration of drained fens: perspectives from northwestern Europe,” in Linking Restoration and Ecological Succession, L. R. Walker, J. Walker, and R. J. Hobbs, Eds., pp. 90–120, Springer, New York, NY, USA, 2007.
[8]  R. L. Westerman, Soil Testing and Plant Analysis, Soil Science Society of America, Madison, Wis, USA, 1990.
[9]  H. Jenny, S. Gessel, and F. Bingham, “Comparative study of decomposition of organic matter in temperate and tropical regions,” Soil Science, vol. 68, pp. 419–432, 1949.
[10]  J. D. León, M. I. González, and J. F. Gallardo, “Ciclos biogeoquímicos en bosques naturales y plantaciones de coníferas en ecosistemas de alta monta?a de Colombia,” Revista Biología Tropical, vol. 59, pp. 1883–1894, 2011.
[11]  J. Olson, “Energy storage and balance of producers and decomposer in ecological systems,” Ecology, vol. 44, pp. 322–331, 1963.
[12]  V. Meentemeyer, E. O. Box, and R. Thompson, “World patterns and amounts of terrestrial plant litter production,” Bioscience, vol. 32, pp. 125–128, 1982.
[13]  C. Strojan, F. Turner, and R. Castetter, “Litter fall from shrubs in the northern Mojave desert,” Ecology, vol. 60, pp. 891–900, 1979.
[14]  J. A. Parrotta, “Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta, and Leucaena leucocephala in Puerto Rico,” Forest Ecology and Management, vol. 124, no. 1, pp. 45–77, 1999.
[15]  J. Goma-Tchimbakala and F. Bernhard-Reversat, “Comparison of litter dynamics in three plantations of an indigenous timber-tree species (Terminalia superba) and a natural tropical forest in Mayombe, Congo,” Forest Ecology and Management, vol. 229, no. 1–3, pp. 304–313, 2006.
[16]  J. Barlow, T. A. Gardner, L. V. Ferreira, and C. A. Peres, “Litter fall and decomposition in primary, secondary and plantation forests in the Brazilian Amazon,” Forest Ecology and Management, vol. 247, no. 1–3, pp. 91–97, 2007.
[17]  K. Descheemaeker, B. Muys, J. Nyssen et al., “Litter production and organic matter accumulation in exclosures of the Tigray highlands, Ethiopia,” Forest Ecology and Management, vol. 233, no. 1, pp. 21–35, 2006.
[18]  J. Sawyer, Plantations in the Tropics: Environmental Concerns, IUCN, Gland, Switzerland, 1993.
[19]  A. E. Lugo, “The apparent paradox of reestablishing species richness on degraded lands with tree monocultures,” Forest Ecology and Management, vol. 99, no. 1-2, pp. 9–19, 1997.
[20]  J. F. Dames, M. C. Scholes, and C. J. Straker, “Litter production and accumulation in Pinus patula plantations of the Mpumalanga Province, South Africa,” Plant and Soil, vol. 203, no. 2, pp. 183–190, 1998.
[21]  J. F. Dames, M. C. Scholes, and C. J. Straker, “Nutrient cycling in a Pinus patula plantation in the Mpumalanga Province, South Africa,” Applied Soil Ecology, vol. 20, no. 3, pp. 211–226, 2002.
[22]  S. E. Attignon, D. Weibel, T. Lachat, B. Sinsin, P. Nagel, and R. Peveling, “Leaf litter breakdown in natural and plantation forests of the Lama forest reserve in Benin,” Applied Soil Ecology, vol. 27, no. 2, pp. 109–124, 2004.
[23]  A. N. Singh, A. S. Raghubanshi, and J. S. Singh, “Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region, India,” Ecological Engineering, vol. 22, no. 2, pp. 123–140, 2004.
[24]  D. L. Moorhead and R. L. Sinsabaugh, “A theoretical model of litter decay and microbial interaction,” Ecological Monographs, vol. 76, no. 2, pp. 151–174, 2006.
[25]  J. M. Duivenvoorden and J. F. Lips, A Land-Ecological Study of Soils, Vegetation, and Plant Diversity in Colombian Amazonia, Tropenbos, Series 12, The Tropenbos Foundation, Wageningen, The Netherlands, 1995.
[26]  H. Marschner, Mineral Nutrition of Higher Plants, Academic Press, London, UK, 1995.
[27]  R. Aerts, “Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship,” Oikos, vol. 79, no. 3, pp. 439–449, 1997.
[28]  F. J. Stevenson, Cycles of Soil, John Wiley & Sons, New York, NY, USA, 1986.
[29]  D. Lamb and D. Gilmour, Issues in Forest Conservation. Rehabilitation and Restoration of Degraded Forests, International Union for Conservation of Nature and Natural Resources and World Wide Fund, Cambridge, UK, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133