全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Robotics  2013 

Estimate a Flexible Link’s Shape by the Use of Strain Gauge Sensors

DOI: 10.5402/2013/212805

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a method for estimating the flexible link’s shape by finite number of sensors. The position and orientation of flexible link are expressed as a function of curvature of the link. An interpolation technique gives this continuous curvature function from a finite set of the Wheatstone bridge made with strain gauges. For interpolation we can use different functions to find better way for estimation of link’s shape. Comparison between different types of function can show us best corresponding with nature of the link. Our case study is a single flexible link robot. A high-precision data logger is used as data acquisition instrument. 1. Introduction Research into flexible manipulator fields has become more important for more than a decade on account of new robotic applications in different areas such as industrial tasks in which the trend is to use lightweight materials (e.g., carbon fiber and composites) in the structures of manipulators in order to improve the performance of the industrial robots which are large and heavy. In aerospace applications the lightness of the materials is also an important requirement; the control of large structures, such as boom cranes and fire rescue turntable ladders, which are treated as flexible link robots is discussed by [1, 2]; minimally invasive surgery is performed with thin flexible instruments in which precise automatic manipulators are necessary [3]. These flexible manipulators exhibit important advantages in comparison to rigid ones, such as reduce energy consumption, smaller actuators, safety for humans, and more agility. Moreover, the effects of the collision with obstacles or humans are decreased because of the flexibility of the links. In spite of these advantages, the control problem of the flexible link manipulators becomes more complicated because the structural flexibility has to be controlled in such a way that the vibrations are cancelled if a good tip position and/or force control is to be gained. Most of the work in the field of elastic robotic manipulator is confined to theoretical investigations. For validation the theoretical results by experimental testbed, it can be pointed out to the works of Cannon and Schmitz [4] as a pioneer in experimental study of single-link elastic robotic manipulator. Naganathan and Soni [5] also prepared an experimental setup composed of a single-link mounted on a stepper motor to verify their FEM results. Bellezza et al. [6] conducted experiments to study quasi-clamped and quasi-pinned end conditioned in slewing links. Luo [7] used a strain gauge sensor

References

[1]  I. Payo, V. Feliu, and O. D. Cortázar, “Force control of a very lightweight single-link flexible arm based on coupling torque feedback,” Mechatronics, vol. 19, no. 3, pp. 334–347, 2009.
[2]  O. Sawodny, H. Aschemann, and A. Bulach, “Mechatronical designed control of fire-rescue turntable-ladders as flexible link robots,” in Proceedings of the 15th Triennial World Congress International Federation of Automatic Control (IFAC '02), Barcelona, Spain, 2002.
[3]  R. A. Beasley and R. D. Howe, “Model-based error correction for flexible robotic surgical instruments,” in Proceedings of Robotics: Science and System Conference, vol. 1, 2005.
[4]  R. H. Cannon and E. Schmitz, “Initial experiments on end-point control of a flexible one-link robot,” International Journal of Robotics Research, vol. 3, no. 3, pp. 62–75, 1984.
[5]  G. Naganathan and A. H. Soni, “An analytical and experimental investigation of flexible manipulator performance,” in Proceeding of the IEEE International Conference on Robotic and Automation, vol. 4, pp. 767–773, 1987.
[6]  F. Bellezza, L. Lanari, and G. Ulivi, “Exact modeling of the flexible slewing link,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 734–739, May 1990.
[7]  Z. H. Luo, “Direct strain feedback control of flexible robot arms: new theoretical and experimental results,” IEEE Transactions on Automatic Control, vol. 38, no. 11, pp. 1610–1622, 1993.
[8]  Z. Yang, “Prediction of the dynamic response of flexible manipulators from a modal database,” Mechanism and Machine Theory, vol. 32, no. 6, pp. 679–689, 1997.
[9]  J. M. Martins, Z. Mohamed, M. O. Tokhi, J. Sá da Costa, and M. A. Botto, “Approaches for dynamic modelling of flexible manipulator systems,” IEE Proceedings on Control Theory and Applications, vol. 150, no. 4, pp. 401–411, 2003.
[10]  S. G. Ladkany, “The dynamic response of a flexible three-link robot using strain gages and lagrange polynomials,” in Proceedings of the 4th World Conference on Robotics Research, 1991.
[11]  J. F. Peza Solis, G. Silva Navarro, and R. Castro Linares, “Modeling tip position control of a flexible link robot,” Computation y Sistemas, vol. 12, no. 4, pp. 421–435, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133